This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, , extracting a singleton from the left. (Contributed by AV, 7-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptfzsplit.b | ||
| gsummptfzsplit.p | |||
| gsummptfzsplit.g | |||
| gsummptfzsplit.n | |||
| gsummptfzsplitl.y | |||
| Assertion | gsummptfzsplitl |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfzsplit.b | ||
| 2 | gsummptfzsplit.p | ||
| 3 | gsummptfzsplit.g | ||
| 4 | gsummptfzsplit.n | ||
| 5 | gsummptfzsplitl.y | ||
| 6 | fzfid | ||
| 7 | incom | ||
| 8 | 7 | a1i | |
| 9 | 1e0p1 | ||
| 10 | 9 | oveq1i | |
| 11 | 10 | a1i | |
| 12 | 11 | ineq2d | |
| 13 | elnn0uz | ||
| 14 | 13 | biimpi | |
| 15 | fzpreddisj | ||
| 16 | 4 14 15 | 3syl | |
| 17 | 8 12 16 | 3eqtrd | |
| 18 | fzpred | ||
| 19 | 4 14 18 | 3syl | |
| 20 | uncom | ||
| 21 | 0p1e1 | ||
| 22 | 21 | oveq1i | |
| 23 | 22 | uneq1i | |
| 24 | 20 23 | eqtri | |
| 25 | 19 24 | eqtrdi | |
| 26 | 1 2 3 6 5 17 25 | gsummptfidmsplit |