This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzcmnf.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| cntzcmnf.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| cntzcmnf.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| cntzcmnf.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| Assertion | cntzcmnf | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzcmnf.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | cntzcmnf.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 3 | cntzcmnf.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | cntzcmnf.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 5 | 4 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ 𝐵 ) |
| 6 | 1 2 | cntzcmn | ⊢ ( ( 𝐺 ∈ CMnd ∧ ran 𝐹 ⊆ 𝐵 ) → ( 𝑍 ‘ ran 𝐹 ) = 𝐵 ) |
| 7 | 3 5 6 | syl2anc | ⊢ ( 𝜑 → ( 𝑍 ‘ ran 𝐹 ) = 𝐵 ) |
| 8 | 5 7 | sseqtrrd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |