This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate a group sum on ` ( CCfld |``s RR ) ` to a finite sum on the reals. Cf. gsumfsum . (Contributed by Thierry Arnoux, 7-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | regsumfsum.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| regsumfsum.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| Assertion | regsumfsum | ⊢ ( 𝜑 → ( ( ℂfld ↾s ℝ ) Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | regsumfsum.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | regsumfsum.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 3 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 4 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 5 | eqid | ⊢ ( ℂfld ↾s ℝ ) = ( ℂfld ↾s ℝ ) | |
| 6 | cnfldex | ⊢ ℂfld ∈ V | |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ℂfld ∈ V ) |
| 8 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 10 | 2 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |
| 11 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) | |
| 13 | 12 | addlidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 14 | 12 | addridd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 15 | 13 14 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) |
| 16 | 3 4 5 7 1 9 10 11 15 | gsumress | ⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( ( ℂfld ↾s ℝ ) Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 17 | 2 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 18 | 1 17 | gsumfsum | ⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 19 | 16 18 | eqtr3d | ⊢ ( 𝜑 → ( ( ℂfld ↾s ℝ ) Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |