This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate a group sum on CCfld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumfsum.1 | |- ( ph -> A e. Fin ) |
|
| gsumfsum.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| Assertion | gsumfsum | |- ( ph -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumfsum.1 | |- ( ph -> A e. Fin ) |
|
| 2 | gsumfsum.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | mpteq1 | |- ( A = (/) -> ( k e. A |-> B ) = ( k e. (/) |-> B ) ) |
|
| 4 | mpt0 | |- ( k e. (/) |-> B ) = (/) |
|
| 5 | 3 4 | eqtrdi | |- ( A = (/) -> ( k e. A |-> B ) = (/) ) |
| 6 | 5 | oveq2d | |- ( A = (/) -> ( CCfld gsum ( k e. A |-> B ) ) = ( CCfld gsum (/) ) ) |
| 7 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 8 | 7 | gsum0 | |- ( CCfld gsum (/) ) = 0 |
| 9 | sum0 | |- sum_ k e. (/) B = 0 |
|
| 10 | 8 9 | eqtr4i | |- ( CCfld gsum (/) ) = sum_ k e. (/) B |
| 11 | 6 10 | eqtrdi | |- ( A = (/) -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. (/) B ) |
| 12 | sumeq1 | |- ( A = (/) -> sum_ k e. A B = sum_ k e. (/) B ) |
|
| 13 | 11 12 | eqtr4d | |- ( A = (/) -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) |
| 14 | 13 | a1i | |- ( ph -> ( A = (/) -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) ) |
| 15 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 16 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 17 | eqid | |- ( Cntz ` CCfld ) = ( Cntz ` CCfld ) |
|
| 18 | cnring | |- CCfld e. Ring |
|
| 19 | ringmnd | |- ( CCfld e. Ring -> CCfld e. Mnd ) |
|
| 20 | 18 19 | mp1i | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> CCfld e. Mnd ) |
| 21 | 1 | adantr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> A e. Fin ) |
| 22 | 2 | fmpttd | |- ( ph -> ( k e. A |-> B ) : A --> CC ) |
| 23 | 22 | adantr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> B ) : A --> CC ) |
| 24 | ringcmn | |- ( CCfld e. Ring -> CCfld e. CMnd ) |
|
| 25 | 18 24 | mp1i | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> CCfld e. CMnd ) |
| 26 | 15 17 25 23 | cntzcmnf | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ran ( k e. A |-> B ) C_ ( ( Cntz ` CCfld ) ` ran ( k e. A |-> B ) ) ) |
| 27 | simprl | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. NN ) |
|
| 28 | simprr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
|
| 29 | f1of1 | |- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) -1-1-> A ) |
|
| 30 | 28 29 | syl | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-> A ) |
| 31 | suppssdm | |- ( ( k e. A |-> B ) supp 0 ) C_ dom ( k e. A |-> B ) |
|
| 32 | 31 23 | fssdm | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( ( k e. A |-> B ) supp 0 ) C_ A ) |
| 33 | f1ofo | |- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) -onto-> A ) |
|
| 34 | forn | |- ( f : ( 1 ... ( # ` A ) ) -onto-> A -> ran f = A ) |
|
| 35 | 28 33 34 | 3syl | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ran f = A ) |
| 36 | 32 35 | sseqtrrd | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( ( k e. A |-> B ) supp 0 ) C_ ran f ) |
| 37 | eqid | |- ( ( ( k e. A |-> B ) o. f ) supp 0 ) = ( ( ( k e. A |-> B ) o. f ) supp 0 ) |
|
| 38 | 15 7 16 17 20 21 23 26 27 30 36 37 | gsumval3 | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( CCfld gsum ( k e. A |-> B ) ) = ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) |
| 39 | sumfc | |- sum_ x e. A ( ( k e. A |-> B ) ` x ) = sum_ k e. A B |
|
| 40 | fveq2 | |- ( x = ( f ` n ) -> ( ( k e. A |-> B ) ` x ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
|
| 41 | 23 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. A ) -> ( ( k e. A |-> B ) ` x ) e. CC ) |
| 42 | f1of | |- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) --> A ) |
|
| 43 | 28 42 | syl | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) |
| 44 | fvco3 | |- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
|
| 45 | 43 44 | sylan | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
| 46 | 40 27 28 41 45 | fsum | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ x e. A ( ( k e. A |-> B ) ` x ) = ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) |
| 47 | 39 46 | eqtr3id | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ k e. A B = ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) |
| 48 | 38 47 | eqtr4d | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) |
| 49 | 48 | expr | |- ( ( ph /\ ( # ` A ) e. NN ) -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) ) |
| 50 | 49 | exlimdv | |- ( ( ph /\ ( # ` A ) e. NN ) -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) ) |
| 51 | 50 | expimpd | |- ( ph -> ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) ) |
| 52 | fz1f1o | |- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
|
| 53 | 1 52 | syl | |- ( ph -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
| 54 | 14 51 53 | mpjaod | |- ( ph -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) |