This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A triangle induces a closed walk of length 3 . (Contributed by AV, 26-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grtriclwlk3.t | ⊢ ( 𝜑 → 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ) | |
| grtriclwlk3.p | ⊢ ( 𝜑 → 𝑃 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) | ||
| Assertion | grtriclwlk3 | ⊢ ( 𝜑 → 𝑃 ∈ ( 3 ClWWalksN 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grtriclwlk3.t | ⊢ ( 𝜑 → 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ) | |
| 2 | grtriclwlk3.p | ⊢ ( 𝜑 → 𝑃 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) | |
| 3 | f1ofn | ⊢ ( 𝑃 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → 𝑃 Fn ( 0 ..^ 3 ) ) | |
| 4 | hashfn | ⊢ ( 𝑃 Fn ( 0 ..^ 3 ) → ( ♯ ‘ 𝑃 ) = ( ♯ ‘ ( 0 ..^ 3 ) ) ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝑃 ) = ( ♯ ‘ ( 0 ..^ 3 ) ) ) |
| 6 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 7 | hashfzo0 | ⊢ ( 3 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 3 ) ) = 3 ) | |
| 8 | 6 7 | mp1i | ⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ 3 ) ) = 3 ) |
| 9 | 5 8 | eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ 𝑃 ) = 3 ) |
| 10 | f1of | ⊢ ( 𝑃 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → 𝑃 : ( 0 ..^ 3 ) ⟶ 𝑇 ) | |
| 11 | 2 10 | syl | ⊢ ( 𝜑 → 𝑃 : ( 0 ..^ 3 ) ⟶ 𝑇 ) |
| 12 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 13 | 12 | grtrissvtx | ⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → 𝑇 ⊆ ( Vtx ‘ 𝐺 ) ) |
| 14 | 1 13 | syl | ⊢ ( 𝜑 → 𝑇 ⊆ ( Vtx ‘ 𝐺 ) ) |
| 15 | 11 14 | jca | ⊢ ( 𝜑 → ( 𝑃 : ( 0 ..^ 3 ) ⟶ 𝑇 ∧ 𝑇 ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( 𝑃 : ( 0 ..^ 3 ) ⟶ 𝑇 ∧ 𝑇 ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 17 | fss | ⊢ ( ( 𝑃 : ( 0 ..^ 3 ) ⟶ 𝑇 ∧ 𝑇 ⊆ ( Vtx ‘ 𝐺 ) ) → 𝑃 : ( 0 ..^ 3 ) ⟶ ( Vtx ‘ 𝐺 ) ) | |
| 18 | iswrdi | ⊢ ( 𝑃 : ( 0 ..^ 3 ) ⟶ ( Vtx ‘ 𝐺 ) → 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) | |
| 19 | 16 17 18 | 3syl | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 20 | oveq1 | ⊢ ( ( ♯ ‘ 𝑃 ) = 3 → ( ( ♯ ‘ 𝑃 ) − 1 ) = ( 3 − 1 ) ) | |
| 21 | 3m1e2 | ⊢ ( 3 − 1 ) = 2 | |
| 22 | 20 21 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑃 ) = 3 → ( ( ♯ ‘ 𝑃 ) − 1 ) = 2 ) |
| 23 | 22 | oveq2d | ⊢ ( ( ♯ ‘ 𝑃 ) = 3 → ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 0 ..^ 2 ) ) |
| 24 | fzo0to2pr | ⊢ ( 0 ..^ 2 ) = { 0 , 1 } | |
| 25 | 23 24 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑃 ) = 3 → ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = { 0 , 1 } ) |
| 26 | 25 | eleq2d | ⊢ ( ( ♯ ‘ 𝑃 ) = 3 → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↔ 𝑖 ∈ { 0 , 1 } ) ) |
| 27 | 26 | adantl | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↔ 𝑖 ∈ { 0 , 1 } ) ) |
| 28 | 1 2 | jca | ⊢ ( 𝜑 → ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ∧ 𝑃 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) ) |
| 29 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 30 | 12 29 | grtrif1o | ⊢ ( ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ∧ 𝑃 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 31 | simp1 | ⊢ ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) | |
| 32 | 28 30 31 | 3syl | ⊢ ( 𝜑 → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 34 | fveq2 | ⊢ ( 𝑖 = 0 → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ 0 ) ) | |
| 35 | fv0p1e1 | ⊢ ( 𝑖 = 0 → ( 𝑃 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ 1 ) ) | |
| 36 | 34 35 | preq12d | ⊢ ( 𝑖 = 0 → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
| 37 | 36 | eleq1d | ⊢ ( 𝑖 = 0 → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 38 | 33 37 | imbitrrid | ⊢ ( 𝑖 = 0 → ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 39 | simp3 | ⊢ ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) | |
| 40 | 28 30 39 | 3syl | ⊢ ( 𝜑 → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 41 | 40 | adantr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 42 | fveq2 | ⊢ ( 𝑖 = 1 → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ 1 ) ) | |
| 43 | oveq1 | ⊢ ( 𝑖 = 1 → ( 𝑖 + 1 ) = ( 1 + 1 ) ) | |
| 44 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 45 | 43 44 | eqtrdi | ⊢ ( 𝑖 = 1 → ( 𝑖 + 1 ) = 2 ) |
| 46 | 45 | fveq2d | ⊢ ( 𝑖 = 1 → ( 𝑃 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ 2 ) ) |
| 47 | 42 46 | preq12d | ⊢ ( 𝑖 = 1 → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 48 | 47 | eleq1d | ⊢ ( 𝑖 = 1 → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 49 | 41 48 | imbitrrid | ⊢ ( 𝑖 = 1 → ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 50 | 38 49 | jaoi | ⊢ ( ( 𝑖 = 0 ∨ 𝑖 = 1 ) → ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 51 | elpri | ⊢ ( 𝑖 ∈ { 0 , 1 } → ( 𝑖 = 0 ∨ 𝑖 = 1 ) ) | |
| 52 | 50 51 | syl11 | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( 𝑖 ∈ { 0 , 1 } → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 53 | 27 52 | sylbid | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 54 | 53 | ralrimiv | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 55 | ovexd | ⊢ ( 𝑃 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( 0 ..^ 3 ) ∈ V ) | |
| 56 | 10 55 | jca | ⊢ ( 𝑃 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( 𝑃 : ( 0 ..^ 3 ) ⟶ 𝑇 ∧ ( 0 ..^ 3 ) ∈ V ) ) |
| 57 | fex | ⊢ ( ( 𝑃 : ( 0 ..^ 3 ) ⟶ 𝑇 ∧ ( 0 ..^ 3 ) ∈ V ) → 𝑃 ∈ V ) | |
| 58 | 2 56 57 | 3syl | ⊢ ( 𝜑 → 𝑃 ∈ V ) |
| 59 | 58 | adantr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → 𝑃 ∈ V ) |
| 60 | lsw | ⊢ ( 𝑃 ∈ V → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) | |
| 61 | 59 60 | syl | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 62 | 22 | fveq2d | ⊢ ( ( ♯ ‘ 𝑃 ) = 3 → ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 2 ) ) |
| 63 | 62 | adantl | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 2 ) ) |
| 64 | 61 63 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 2 ) ) |
| 65 | 64 | preq1d | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → { ( lastS ‘ 𝑃 ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ) |
| 66 | prcom | ⊢ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } | |
| 67 | 66 | eleq1i | ⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 68 | 67 | biimpi | ⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 69 | 68 | 3ad2ant2 | ⊢ ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 70 | 28 30 69 | 3syl | ⊢ ( 𝜑 → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 71 | 70 | adantr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 72 | 65 71 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → { ( lastS ‘ 𝑃 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 73 | 19 54 72 | 3jca | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑃 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 74 | simpr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( ♯ ‘ 𝑃 ) = 3 ) | |
| 75 | 73 74 | jca | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑃 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑃 ) = 3 ) ) |
| 76 | 9 75 | mpdan | ⊢ ( 𝜑 → ( ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑃 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑃 ) = 3 ) ) |
| 77 | 3nn | ⊢ 3 ∈ ℕ | |
| 78 | 12 29 | isclwwlknx | ⊢ ( 3 ∈ ℕ → ( 𝑃 ∈ ( 3 ClWWalksN 𝐺 ) ↔ ( ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑃 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑃 ) = 3 ) ) ) |
| 79 | 77 78 | mp1i | ⊢ ( 𝜑 → ( 𝑃 ∈ ( 3 ClWWalksN 𝐺 ) ↔ ( ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑃 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑃 ) = 3 ) ) ) |
| 80 | 76 79 | mpbird | ⊢ ( 𝜑 → 𝑃 ∈ ( 3 ClWWalksN 𝐺 ) ) |