This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A triangle is a subset of the vertices (of a graph). (Contributed by AV, 26-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grtrissvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | grtrissvtx | ⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → 𝑇 ⊆ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grtrissvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | grtriprop | ⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 4 | tpssi | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → { 𝑥 , 𝑦 , 𝑧 } ⊆ 𝑉 ) | |
| 5 | 4 | 3expa | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑧 ∈ 𝑉 ) → { 𝑥 , 𝑦 , 𝑧 } ⊆ 𝑉 ) |
| 6 | sseq1 | ⊢ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } → ( 𝑇 ⊆ 𝑉 ↔ { 𝑥 , 𝑦 , 𝑧 } ⊆ 𝑉 ) ) | |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑇 ⊆ 𝑉 ↔ { 𝑥 , 𝑦 , 𝑧 } ⊆ 𝑉 ) ) |
| 8 | 5 7 | syl5ibrcom | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝑇 ⊆ 𝑉 ) ) |
| 9 | 8 | rexlimdva | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝑇 ⊆ 𝑉 ) ) |
| 10 | 9 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝑇 ⊆ 𝑉 ) |
| 11 | 3 10 | syl | ⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → 𝑇 ⊆ 𝑉 ) |