This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A triangle induces a closed walk of length 3 . (Contributed by AV, 26-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grtriclwlk3.t | |- ( ph -> T e. ( GrTriangles ` G ) ) |
|
| grtriclwlk3.p | |- ( ph -> P : ( 0 ..^ 3 ) -1-1-onto-> T ) |
||
| Assertion | grtriclwlk3 | |- ( ph -> P e. ( 3 ClWWalksN G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grtriclwlk3.t | |- ( ph -> T e. ( GrTriangles ` G ) ) |
|
| 2 | grtriclwlk3.p | |- ( ph -> P : ( 0 ..^ 3 ) -1-1-onto-> T ) |
|
| 3 | f1ofn | |- ( P : ( 0 ..^ 3 ) -1-1-onto-> T -> P Fn ( 0 ..^ 3 ) ) |
|
| 4 | hashfn | |- ( P Fn ( 0 ..^ 3 ) -> ( # ` P ) = ( # ` ( 0 ..^ 3 ) ) ) |
|
| 5 | 2 3 4 | 3syl | |- ( ph -> ( # ` P ) = ( # ` ( 0 ..^ 3 ) ) ) |
| 6 | 3nn0 | |- 3 e. NN0 |
|
| 7 | hashfzo0 | |- ( 3 e. NN0 -> ( # ` ( 0 ..^ 3 ) ) = 3 ) |
|
| 8 | 6 7 | mp1i | |- ( ph -> ( # ` ( 0 ..^ 3 ) ) = 3 ) |
| 9 | 5 8 | eqtrd | |- ( ph -> ( # ` P ) = 3 ) |
| 10 | f1of | |- ( P : ( 0 ..^ 3 ) -1-1-onto-> T -> P : ( 0 ..^ 3 ) --> T ) |
|
| 11 | 2 10 | syl | |- ( ph -> P : ( 0 ..^ 3 ) --> T ) |
| 12 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 13 | 12 | grtrissvtx | |- ( T e. ( GrTriangles ` G ) -> T C_ ( Vtx ` G ) ) |
| 14 | 1 13 | syl | |- ( ph -> T C_ ( Vtx ` G ) ) |
| 15 | 11 14 | jca | |- ( ph -> ( P : ( 0 ..^ 3 ) --> T /\ T C_ ( Vtx ` G ) ) ) |
| 16 | 15 | adantr | |- ( ( ph /\ ( # ` P ) = 3 ) -> ( P : ( 0 ..^ 3 ) --> T /\ T C_ ( Vtx ` G ) ) ) |
| 17 | fss | |- ( ( P : ( 0 ..^ 3 ) --> T /\ T C_ ( Vtx ` G ) ) -> P : ( 0 ..^ 3 ) --> ( Vtx ` G ) ) |
|
| 18 | iswrdi | |- ( P : ( 0 ..^ 3 ) --> ( Vtx ` G ) -> P e. Word ( Vtx ` G ) ) |
|
| 19 | 16 17 18 | 3syl | |- ( ( ph /\ ( # ` P ) = 3 ) -> P e. Word ( Vtx ` G ) ) |
| 20 | oveq1 | |- ( ( # ` P ) = 3 -> ( ( # ` P ) - 1 ) = ( 3 - 1 ) ) |
|
| 21 | 3m1e2 | |- ( 3 - 1 ) = 2 |
|
| 22 | 20 21 | eqtrdi | |- ( ( # ` P ) = 3 -> ( ( # ` P ) - 1 ) = 2 ) |
| 23 | 22 | oveq2d | |- ( ( # ` P ) = 3 -> ( 0 ..^ ( ( # ` P ) - 1 ) ) = ( 0 ..^ 2 ) ) |
| 24 | fzo0to2pr | |- ( 0 ..^ 2 ) = { 0 , 1 } |
|
| 25 | 23 24 | eqtrdi | |- ( ( # ` P ) = 3 -> ( 0 ..^ ( ( # ` P ) - 1 ) ) = { 0 , 1 } ) |
| 26 | 25 | eleq2d | |- ( ( # ` P ) = 3 -> ( i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) <-> i e. { 0 , 1 } ) ) |
| 27 | 26 | adantl | |- ( ( ph /\ ( # ` P ) = 3 ) -> ( i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) <-> i e. { 0 , 1 } ) ) |
| 28 | 1 2 | jca | |- ( ph -> ( T e. ( GrTriangles ` G ) /\ P : ( 0 ..^ 3 ) -1-1-onto-> T ) ) |
| 29 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 30 | 12 29 | grtrif1o | |- ( ( T e. ( GrTriangles ` G ) /\ P : ( 0 ..^ 3 ) -1-1-onto-> T ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| 31 | simp1 | |- ( ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) -> { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) ) |
|
| 32 | 28 30 31 | 3syl | |- ( ph -> { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) ) |
| 33 | 32 | adantr | |- ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) ) |
| 34 | fveq2 | |- ( i = 0 -> ( P ` i ) = ( P ` 0 ) ) |
|
| 35 | fv0p1e1 | |- ( i = 0 -> ( P ` ( i + 1 ) ) = ( P ` 1 ) ) |
|
| 36 | 34 35 | preq12d | |- ( i = 0 -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 37 | 36 | eleq1d | |- ( i = 0 -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) ) ) |
| 38 | 33 37 | imbitrrid | |- ( i = 0 -> ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 39 | simp3 | |- ( ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) -> { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) |
|
| 40 | 28 30 39 | 3syl | |- ( ph -> { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) |
| 41 | 40 | adantr | |- ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) |
| 42 | fveq2 | |- ( i = 1 -> ( P ` i ) = ( P ` 1 ) ) |
|
| 43 | oveq1 | |- ( i = 1 -> ( i + 1 ) = ( 1 + 1 ) ) |
|
| 44 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 45 | 43 44 | eqtrdi | |- ( i = 1 -> ( i + 1 ) = 2 ) |
| 46 | 45 | fveq2d | |- ( i = 1 -> ( P ` ( i + 1 ) ) = ( P ` 2 ) ) |
| 47 | 42 46 | preq12d | |- ( i = 1 -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = { ( P ` 1 ) , ( P ` 2 ) } ) |
| 48 | 47 | eleq1d | |- ( i = 1 -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| 49 | 41 48 | imbitrrid | |- ( i = 1 -> ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 50 | 38 49 | jaoi | |- ( ( i = 0 \/ i = 1 ) -> ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 51 | elpri | |- ( i e. { 0 , 1 } -> ( i = 0 \/ i = 1 ) ) |
|
| 52 | 50 51 | syl11 | |- ( ( ph /\ ( # ` P ) = 3 ) -> ( i e. { 0 , 1 } -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 53 | 27 52 | sylbid | |- ( ( ph /\ ( # ` P ) = 3 ) -> ( i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 54 | 53 | ralrimiv | |- ( ( ph /\ ( # ` P ) = 3 ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 55 | ovexd | |- ( P : ( 0 ..^ 3 ) -1-1-onto-> T -> ( 0 ..^ 3 ) e. _V ) |
|
| 56 | 10 55 | jca | |- ( P : ( 0 ..^ 3 ) -1-1-onto-> T -> ( P : ( 0 ..^ 3 ) --> T /\ ( 0 ..^ 3 ) e. _V ) ) |
| 57 | fex | |- ( ( P : ( 0 ..^ 3 ) --> T /\ ( 0 ..^ 3 ) e. _V ) -> P e. _V ) |
|
| 58 | 2 56 57 | 3syl | |- ( ph -> P e. _V ) |
| 59 | 58 | adantr | |- ( ( ph /\ ( # ` P ) = 3 ) -> P e. _V ) |
| 60 | lsw | |- ( P e. _V -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
|
| 61 | 59 60 | syl | |- ( ( ph /\ ( # ` P ) = 3 ) -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
| 62 | 22 | fveq2d | |- ( ( # ` P ) = 3 -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 2 ) ) |
| 63 | 62 | adantl | |- ( ( ph /\ ( # ` P ) = 3 ) -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 2 ) ) |
| 64 | 61 63 | eqtrd | |- ( ( ph /\ ( # ` P ) = 3 ) -> ( lastS ` P ) = ( P ` 2 ) ) |
| 65 | 64 | preq1d | |- ( ( ph /\ ( # ` P ) = 3 ) -> { ( lastS ` P ) , ( P ` 0 ) } = { ( P ` 2 ) , ( P ` 0 ) } ) |
| 66 | prcom | |- { ( P ` 0 ) , ( P ` 2 ) } = { ( P ` 2 ) , ( P ` 0 ) } |
|
| 67 | 66 | eleq1i | |- ( { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) <-> { ( P ` 2 ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
| 68 | 67 | biimpi | |- ( { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) -> { ( P ` 2 ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
| 69 | 68 | 3ad2ant2 | |- ( ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) -> { ( P ` 2 ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
| 70 | 28 30 69 | 3syl | |- ( ph -> { ( P ` 2 ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
| 71 | 70 | adantr | |- ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` 2 ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
| 72 | 65 71 | eqeltrd | |- ( ( ph /\ ( # ` P ) = 3 ) -> { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
| 73 | 19 54 72 | 3jca | |- ( ( ph /\ ( # ` P ) = 3 ) -> ( P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) |
| 74 | simpr | |- ( ( ph /\ ( # ` P ) = 3 ) -> ( # ` P ) = 3 ) |
|
| 75 | 73 74 | jca | |- ( ( ph /\ ( # ` P ) = 3 ) -> ( ( P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` P ) = 3 ) ) |
| 76 | 9 75 | mpdan | |- ( ph -> ( ( P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` P ) = 3 ) ) |
| 77 | 3nn | |- 3 e. NN |
|
| 78 | 12 29 | isclwwlknx | |- ( 3 e. NN -> ( P e. ( 3 ClWWalksN G ) <-> ( ( P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` P ) = 3 ) ) ) |
| 79 | 77 78 | mp1i | |- ( ph -> ( P e. ( 3 ClWWalksN G ) <-> ( ( P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` P ) = 3 ) ) ) |
| 80 | 76 79 | mpbird | |- ( ph -> P e. ( 3 ClWWalksN G ) ) |