This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any bijection onto a triangle preserves the edges of the triangle. (Contributed by AV, 25-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grtri.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| grtri.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | grtrif1o | ⊢ ( ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ∧ 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grtri.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | grtri.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | grtriprop | ⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 4 | f1oeq3 | ⊢ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ↔ 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } ) ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ↔ 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } ) ) |
| 6 | preq12 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑥 , 𝑦 } ) | |
| 7 | 6 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 8 | 7 | 3adant3 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 9 | preq12 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑥 , 𝑧 } ) | |
| 10 | 9 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 11 | 10 | 3adant2 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 12 | preq12 | ⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑦 , 𝑧 } ) | |
| 13 | 12 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 14 | 13 | 3adant1 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 15 | 8 11 14 | 3anbi123d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 16 | 15 | biimprd | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 17 | 3ancoma | ⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) | |
| 18 | prcom | ⊢ { 𝑦 , 𝑧 } = { 𝑧 , 𝑦 } | |
| 19 | 18 | eleq1i | ⊢ ( { 𝑦 , 𝑧 } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) |
| 20 | 19 | 3anbi3i | ⊢ ( ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 21 | 17 20 | sylbb | ⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 22 | preq12 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑥 , 𝑧 } ) | |
| 23 | 22 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 24 | 23 | 3adant3 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 25 | preq12 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑥 , 𝑦 } ) | |
| 26 | 25 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 27 | 26 | 3adant2 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 28 | preq12 | ⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑧 , 𝑦 } ) | |
| 29 | 28 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 30 | 29 | 3adant1 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 31 | 24 27 30 | 3anbi123d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) ) |
| 32 | 21 31 | imbitrrid | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 33 | 16 32 | jaoi | ⊢ ( ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 34 | 3ancomb | ⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) | |
| 35 | prcom | ⊢ { 𝑥 , 𝑦 } = { 𝑦 , 𝑥 } | |
| 36 | 35 | eleq1i | ⊢ ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) |
| 37 | 36 | 3anbi1i | ⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 38 | 34 37 | sylbb | ⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 39 | preq12 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑦 , 𝑥 } ) | |
| 40 | 39 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 41 | 40 | 3adant3 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 42 | preq12 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑦 , 𝑧 } ) | |
| 43 | 42 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 44 | 43 | 3adant2 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 45 | preq12 | ⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑥 , 𝑧 } ) | |
| 46 | 45 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 47 | 46 | 3adant1 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 48 | 41 44 47 | 3anbi123d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) ) |
| 49 | 38 48 | imbitrrid | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 50 | 3anrot | ⊢ ( ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) | |
| 51 | biid | ⊢ ( { 𝑦 , 𝑧 } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) | |
| 52 | prcom | ⊢ { 𝑥 , 𝑧 } = { 𝑧 , 𝑥 } | |
| 53 | 52 | eleq1i | ⊢ ( { 𝑥 , 𝑧 } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) |
| 54 | 51 36 53 | 3anbi123i | ⊢ ( ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 55 | 50 54 | sylbb1 | ⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 56 | preq12 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑦 , 𝑧 } ) | |
| 57 | 56 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 58 | 57 | 3adant3 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 59 | preq12 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑦 , 𝑥 } ) | |
| 60 | 59 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 61 | 60 | 3adant2 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 62 | preq12 | ⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑧 , 𝑥 } ) | |
| 63 | 62 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 64 | 63 | 3adant1 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 65 | 58 61 64 | 3anbi123d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) ) |
| 66 | 55 65 | imbitrrid | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 67 | 49 66 | jaoi | ⊢ ( ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 68 | 3anrot | ⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) | |
| 69 | biid | ⊢ ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) | |
| 70 | 53 19 69 | 3anbi123i | ⊢ ( ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 71 | 68 70 | sylbb | ⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 72 | preq12 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑧 , 𝑥 } ) | |
| 73 | 72 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 74 | 73 | 3adant3 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 75 | preq12 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑧 , 𝑦 } ) | |
| 76 | 75 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 77 | 76 | 3adant2 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 78 | preq12 | ⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑥 , 𝑦 } ) | |
| 79 | 78 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 80 | 79 | 3adant1 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 81 | 74 77 80 | 3anbi123d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) ) |
| 82 | 71 81 | imbitrrid | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 83 | 3anrev | ⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) | |
| 84 | 19 53 36 | 3anbi123i | ⊢ ( ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 85 | 83 84 | sylbb | ⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 86 | preq12 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑧 , 𝑦 } ) | |
| 87 | 86 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 88 | 87 | 3adant3 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 89 | preq12 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑧 , 𝑥 } ) | |
| 90 | 89 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 91 | 90 | 3adant2 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 92 | preq12 | ⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑦 , 𝑥 } ) | |
| 93 | 92 | eleq1d | ⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 94 | 93 | 3adant1 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 95 | 88 91 94 | 3anbi123d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) ) |
| 96 | 85 95 | imbitrrid | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 97 | 82 96 | jaoi | ⊢ ( ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 98 | 33 67 97 | 3jaoi | ⊢ ( ( ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 99 | f1of1 | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } → 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑥 , 𝑦 , 𝑧 } ) | |
| 100 | fvf1tp | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑥 , 𝑦 , 𝑧 } → ( ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ) ) | |
| 101 | 99 100 | syl | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } → ( ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ) ) |
| 102 | 98 101 | syl11 | ⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 103 | 102 | adantl | ⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 104 | 5 103 | sylbid | ⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 105 | 104 | 3adant2 | ⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 106 | 105 | a1i | ⊢ ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) ) |
| 107 | 106 | rexlimivv | ⊢ ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 108 | 107 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 109 | 3 108 | syl | ⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 110 | 109 | imp | ⊢ ( ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ∧ 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) |