This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of a word representing a closed walk of a fixed length, definition of ClWWalks expanded. (Contributed by AV, 25-Apr-2021) (Proof shortened by AV, 22-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isclwwlknx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| isclwwlknx.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | isclwwlknx | ⊢ ( 𝑁 ∈ ℕ → ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclwwlknx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | isclwwlknx.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | eleq1 | ⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑁 ∈ ℕ ) ) | |
| 4 | len0nnbi | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ≠ ∅ ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) | |
| 5 | 4 | biimprcd | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( 𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅ ) ) |
| 6 | 3 5 | biimtrrdi | ⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 𝑁 ∈ ℕ → ( 𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅ ) ) ) |
| 7 | 6 | impcom | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( 𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅ ) ) |
| 8 | 7 | imp | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ 𝑊 ∈ Word 𝑉 ) → 𝑊 ≠ ∅ ) |
| 9 | 8 | biantrurd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ 𝑊 ∈ Word 𝑉 ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ↔ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ) |
| 10 | 9 | bicomd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ 𝑊 ∈ Word 𝑉 ) → ( ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) |
| 11 | 10 | pm5.32da | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ) |
| 12 | 11 | ex | ⊢ ( 𝑁 ∈ ℕ → ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ) ) |
| 13 | 12 | pm5.32rd | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) ) |
| 14 | isclwwlkn | ⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) | |
| 15 | 1 2 | isclwwlk | ⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) |
| 16 | 3anass | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) | |
| 17 | anass | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ) | |
| 18 | 16 17 | bitri | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ) |
| 19 | 15 18 | bitri | ⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ) |
| 20 | 19 | anbi1i | ⊢ ( ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
| 21 | 14 20 | bitri | ⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
| 22 | 3anass | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) | |
| 23 | 22 | anbi1i | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
| 24 | 13 21 23 | 3bitr4g | ⊢ ( 𝑁 ∈ ℕ → ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) ) |