This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right addition by a group element is a bijection on any group. (Contributed by SN, 28-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpraddf1o.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpraddf1o.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpraddf1o.n | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 + 𝑋 ) ) | ||
| Assertion | grpraddf1o | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpraddf1o.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpraddf1o.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpraddf1o.n | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 + 𝑋 ) ) | |
| 4 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐺 ∈ Grp ) | |
| 5 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 6 | simplr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 7 | 1 2 4 5 6 | grpcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 𝑋 ) ∈ 𝐵 ) |
| 8 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐺 ∈ Grp ) | |
| 9 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 10 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 11 | simplr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 12 | 1 10 8 11 | grpinvcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 13 | 1 2 8 9 12 | grpcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ∈ 𝐵 ) |
| 14 | eqcom | ⊢ ( 𝑥 = ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ↔ ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = 𝑥 ) | |
| 15 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) | |
| 16 | 13 | adantrl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ∈ 𝐵 ) |
| 17 | simprl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 18 | simplr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 19 | 1 2 | grprcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = ( 𝑥 + 𝑋 ) ↔ ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = 𝑥 ) ) |
| 20 | 15 16 17 18 19 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = ( 𝑥 + 𝑋 ) ↔ ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = 𝑥 ) ) |
| 21 | simprr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 22 | 12 | adantrl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 23 | 1 2 15 21 22 18 | grpassd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = ( 𝑦 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑋 ) ) ) |
| 24 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 25 | 1 2 24 10 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 26 | 25 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 27 | 26 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑋 ) ) = ( 𝑦 + ( 0g ‘ 𝐺 ) ) ) |
| 28 | 1 2 24 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 + ( 0g ‘ 𝐺 ) ) = 𝑦 ) |
| 29 | 28 | ad2ant2rl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 + ( 0g ‘ 𝐺 ) ) = 𝑦 ) |
| 30 | 23 27 29 | 3eqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = 𝑦 ) |
| 31 | 30 | eqeq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = ( 𝑥 + 𝑋 ) ↔ 𝑦 = ( 𝑥 + 𝑋 ) ) ) |
| 32 | 20 31 | bitr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = 𝑥 ↔ 𝑦 = ( 𝑥 + 𝑋 ) ) ) |
| 33 | 14 32 | bitrid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 = ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ↔ 𝑦 = ( 𝑥 + 𝑋 ) ) ) |
| 34 | 3 7 13 33 | f1o2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |