This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right addition by a group element is a bijection on any group. (Contributed by SN, 28-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpraddf1o.b | |- B = ( Base ` G ) |
|
| grpraddf1o.p | |- .+ = ( +g ` G ) |
||
| grpraddf1o.n | |- F = ( x e. B |-> ( x .+ X ) ) |
||
| Assertion | grpraddf1o | |- ( ( G e. Grp /\ X e. B ) -> F : B -1-1-onto-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpraddf1o.b | |- B = ( Base ` G ) |
|
| 2 | grpraddf1o.p | |- .+ = ( +g ` G ) |
|
| 3 | grpraddf1o.n | |- F = ( x e. B |-> ( x .+ X ) ) |
|
| 4 | simpll | |- ( ( ( G e. Grp /\ X e. B ) /\ x e. B ) -> G e. Grp ) |
|
| 5 | simpr | |- ( ( ( G e. Grp /\ X e. B ) /\ x e. B ) -> x e. B ) |
|
| 6 | simplr | |- ( ( ( G e. Grp /\ X e. B ) /\ x e. B ) -> X e. B ) |
|
| 7 | 1 2 4 5 6 | grpcld | |- ( ( ( G e. Grp /\ X e. B ) /\ x e. B ) -> ( x .+ X ) e. B ) |
| 8 | simpll | |- ( ( ( G e. Grp /\ X e. B ) /\ y e. B ) -> G e. Grp ) |
|
| 9 | simpr | |- ( ( ( G e. Grp /\ X e. B ) /\ y e. B ) -> y e. B ) |
|
| 10 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 11 | simplr | |- ( ( ( G e. Grp /\ X e. B ) /\ y e. B ) -> X e. B ) |
|
| 12 | 1 10 8 11 | grpinvcld | |- ( ( ( G e. Grp /\ X e. B ) /\ y e. B ) -> ( ( invg ` G ) ` X ) e. B ) |
| 13 | 1 2 8 9 12 | grpcld | |- ( ( ( G e. Grp /\ X e. B ) /\ y e. B ) -> ( y .+ ( ( invg ` G ) ` X ) ) e. B ) |
| 14 | eqcom | |- ( x = ( y .+ ( ( invg ` G ) ` X ) ) <-> ( y .+ ( ( invg ` G ) ` X ) ) = x ) |
|
| 15 | simpll | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> G e. Grp ) |
|
| 16 | 13 | adantrl | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( y .+ ( ( invg ` G ) ` X ) ) e. B ) |
| 17 | simprl | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> x e. B ) |
|
| 18 | simplr | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> X e. B ) |
|
| 19 | 1 2 | grprcan | |- ( ( G e. Grp /\ ( ( y .+ ( ( invg ` G ) ` X ) ) e. B /\ x e. B /\ X e. B ) ) -> ( ( ( y .+ ( ( invg ` G ) ` X ) ) .+ X ) = ( x .+ X ) <-> ( y .+ ( ( invg ` G ) ` X ) ) = x ) ) |
| 20 | 15 16 17 18 19 | syl13anc | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( ( ( y .+ ( ( invg ` G ) ` X ) ) .+ X ) = ( x .+ X ) <-> ( y .+ ( ( invg ` G ) ` X ) ) = x ) ) |
| 21 | simprr | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> y e. B ) |
|
| 22 | 12 | adantrl | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( ( invg ` G ) ` X ) e. B ) |
| 23 | 1 2 15 21 22 18 | grpassd | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( ( y .+ ( ( invg ` G ) ` X ) ) .+ X ) = ( y .+ ( ( ( invg ` G ) ` X ) .+ X ) ) ) |
| 24 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 25 | 1 2 24 10 | grplinv | |- ( ( G e. Grp /\ X e. B ) -> ( ( ( invg ` G ) ` X ) .+ X ) = ( 0g ` G ) ) |
| 26 | 25 | adantr | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( ( ( invg ` G ) ` X ) .+ X ) = ( 0g ` G ) ) |
| 27 | 26 | oveq2d | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( y .+ ( ( ( invg ` G ) ` X ) .+ X ) ) = ( y .+ ( 0g ` G ) ) ) |
| 28 | 1 2 24 | grprid | |- ( ( G e. Grp /\ y e. B ) -> ( y .+ ( 0g ` G ) ) = y ) |
| 29 | 28 | ad2ant2rl | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( y .+ ( 0g ` G ) ) = y ) |
| 30 | 23 27 29 | 3eqtrd | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( ( y .+ ( ( invg ` G ) ` X ) ) .+ X ) = y ) |
| 31 | 30 | eqeq1d | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( ( ( y .+ ( ( invg ` G ) ` X ) ) .+ X ) = ( x .+ X ) <-> y = ( x .+ X ) ) ) |
| 32 | 20 31 | bitr3d | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( ( y .+ ( ( invg ` G ) ` X ) ) = x <-> y = ( x .+ X ) ) ) |
| 33 | 14 32 | bitrid | |- ( ( ( G e. Grp /\ X e. B ) /\ ( x e. B /\ y e. B ) ) -> ( x = ( y .+ ( ( invg ` G ) ` X ) ) <-> y = ( x .+ X ) ) ) |
| 34 | 3 7 13 33 | f1o2d | |- ( ( G e. Grp /\ X e. B ) -> F : B -1-1-onto-> B ) |