This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 8.22 in Quine p. 57. This theorem is the result if there isn't exactly one x that satisfies ph . (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotanul | ⊢ ( ¬ ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu6 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) | |
| 2 | dfiota2 | ⊢ ( ℩ 𝑥 𝜑 ) = ∪ { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } | |
| 3 | alnex | ⊢ ( ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ¬ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) | |
| 4 | dfnul2 | ⊢ ∅ = { 𝑧 ∣ ¬ 𝑧 = 𝑧 } | |
| 5 | equid | ⊢ 𝑧 = 𝑧 | |
| 6 | 5 | tbt | ⊢ ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ 𝑧 = 𝑧 ) ) |
| 7 | 6 | biimpi | ⊢ ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ 𝑧 = 𝑧 ) ) |
| 8 | 7 | con1bid | ⊢ ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( ¬ 𝑧 = 𝑧 ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 9 | 8 | alimi | ⊢ ( ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ∀ 𝑧 ( ¬ 𝑧 = 𝑧 ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 10 | abbi | ⊢ ( ∀ 𝑧 ( ¬ 𝑧 = 𝑧 ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) → { 𝑧 ∣ ¬ 𝑧 = 𝑧 } = { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } ) | |
| 11 | 9 10 | syl | ⊢ ( ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → { 𝑧 ∣ ¬ 𝑧 = 𝑧 } = { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } ) |
| 12 | 4 11 | eqtr2id | ⊢ ( ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } = ∅ ) |
| 13 | 3 12 | sylbir | ⊢ ( ¬ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } = ∅ ) |
| 14 | 13 | unieqd | ⊢ ( ¬ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ∪ { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } = ∪ ∅ ) |
| 15 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 16 | 14 15 | eqtrdi | ⊢ ( ¬ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ∪ { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } = ∅ ) |
| 17 | 2 16 | eqtrid | ⊢ ( ¬ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( ℩ 𝑥 𝜑 ) = ∅ ) |
| 18 | 1 17 | sylnbi | ⊢ ( ¬ ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = ∅ ) |