This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define group identity element. Remark: this definition is required here because the symbol 0g is already used in df-gsum . The related theorems are provided later, see grpidval . (Contributed by NM, 20-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-0g | ⊢ 0g = ( 𝑔 ∈ V ↦ ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) = 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | c0g | ⊢ 0g | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cvv | ⊢ V | |
| 3 | ve | ⊢ 𝑒 | |
| 4 | 3 | cv | ⊢ 𝑒 |
| 5 | cbs | ⊢ Base | |
| 6 | 1 | cv | ⊢ 𝑔 |
| 7 | 6 5 | cfv | ⊢ ( Base ‘ 𝑔 ) |
| 8 | 4 7 | wcel | ⊢ 𝑒 ∈ ( Base ‘ 𝑔 ) |
| 9 | vx | ⊢ 𝑥 | |
| 10 | cplusg | ⊢ +g | |
| 11 | 6 10 | cfv | ⊢ ( +g ‘ 𝑔 ) |
| 12 | 9 | cv | ⊢ 𝑥 |
| 13 | 4 12 11 | co | ⊢ ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) |
| 14 | 13 12 | wceq | ⊢ ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) = 𝑥 |
| 15 | 12 4 11 | co | ⊢ ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) |
| 16 | 15 12 | wceq | ⊢ ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) = 𝑥 |
| 17 | 14 16 | wa | ⊢ ( ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) = 𝑥 ) |
| 18 | 17 9 7 | wral | ⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) = 𝑥 ) |
| 19 | 8 18 | wa | ⊢ ( 𝑒 ∈ ( Base ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) = 𝑥 ) ) |
| 20 | 19 3 | cio | ⊢ ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) = 𝑥 ) ) ) |
| 21 | 1 2 20 | cmpt | ⊢ ( 𝑔 ∈ V ↦ ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) = 𝑥 ) ) ) ) |
| 22 | 0 21 | wceq | ⊢ 0g = ( 𝑔 ∈ V ↦ ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) = 𝑥 ) ) ) ) |