This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpidval.b | |- B = ( Base ` G ) |
|
| grpidval.p | |- .+ = ( +g ` G ) |
||
| grpidval.o | |- .0. = ( 0g ` G ) |
||
| Assertion | grpidval | |- .0. = ( iota e ( e e. B /\ A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidval.b | |- B = ( Base ` G ) |
|
| 2 | grpidval.p | |- .+ = ( +g ` G ) |
|
| 3 | grpidval.o | |- .0. = ( 0g ` G ) |
|
| 4 | fveq2 | |- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
|
| 5 | 4 1 | eqtr4di | |- ( g = G -> ( Base ` g ) = B ) |
| 6 | 5 | eleq2d | |- ( g = G -> ( e e. ( Base ` g ) <-> e e. B ) ) |
| 7 | fveq2 | |- ( g = G -> ( +g ` g ) = ( +g ` G ) ) |
|
| 8 | 7 2 | eqtr4di | |- ( g = G -> ( +g ` g ) = .+ ) |
| 9 | 8 | oveqd | |- ( g = G -> ( e ( +g ` g ) x ) = ( e .+ x ) ) |
| 10 | 9 | eqeq1d | |- ( g = G -> ( ( e ( +g ` g ) x ) = x <-> ( e .+ x ) = x ) ) |
| 11 | 8 | oveqd | |- ( g = G -> ( x ( +g ` g ) e ) = ( x .+ e ) ) |
| 12 | 11 | eqeq1d | |- ( g = G -> ( ( x ( +g ` g ) e ) = x <-> ( x .+ e ) = x ) ) |
| 13 | 10 12 | anbi12d | |- ( g = G -> ( ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) <-> ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) ) |
| 14 | 5 13 | raleqbidv | |- ( g = G -> ( A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) <-> A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) ) |
| 15 | 6 14 | anbi12d | |- ( g = G -> ( ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) <-> ( e e. B /\ A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) ) ) |
| 16 | 15 | iotabidv | |- ( g = G -> ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) ) = ( iota e ( e e. B /\ A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) ) ) |
| 17 | df-0g | |- 0g = ( g e. _V |-> ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) ) ) |
|
| 18 | iotaex | |- ( iota e ( e e. B /\ A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) ) e. _V |
|
| 19 | 16 17 18 | fvmpt | |- ( G e. _V -> ( 0g ` G ) = ( iota e ( e e. B /\ A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) ) ) |
| 20 | fvprc | |- ( -. G e. _V -> ( 0g ` G ) = (/) ) |
|
| 21 | euex | |- ( E! e ( e e. B /\ A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) -> E. e ( e e. B /\ A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) ) |
|
| 22 | n0i | |- ( e e. B -> -. B = (/) ) |
|
| 23 | fvprc | |- ( -. G e. _V -> ( Base ` G ) = (/) ) |
|
| 24 | 1 23 | eqtrid | |- ( -. G e. _V -> B = (/) ) |
| 25 | 22 24 | nsyl2 | |- ( e e. B -> G e. _V ) |
| 26 | 25 | adantr | |- ( ( e e. B /\ A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) -> G e. _V ) |
| 27 | 26 | exlimiv | |- ( E. e ( e e. B /\ A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) -> G e. _V ) |
| 28 | 21 27 | syl | |- ( E! e ( e e. B /\ A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) -> G e. _V ) |
| 29 | iotanul | |- ( -. E! e ( e e. B /\ A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) -> ( iota e ( e e. B /\ A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) ) = (/) ) |
|
| 30 | 28 29 | nsyl5 | |- ( -. G e. _V -> ( iota e ( e e. B /\ A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) ) = (/) ) |
| 31 | 20 30 | eqtr4d | |- ( -. G e. _V -> ( 0g ` G ) = ( iota e ( e e. B /\ A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) ) ) |
| 32 | 19 31 | pm2.61i | |- ( 0g ` G ) = ( iota e ( e e. B /\ A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) ) |
| 33 | 3 32 | eqtri | |- .0. = ( iota e ( e e. B /\ A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) ) |