This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a graph isomorphism between a hypergraph and a class with an edge function, the class is also a hypergraph. (Contributed by AV, 2-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grimuhgr | ⊢ ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → 𝑇 ∈ UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝑇 ) = ( Vtx ‘ 𝑇 ) | |
| 3 | eqid | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) | |
| 4 | eqid | ⊢ ( iEdg ‘ 𝑇 ) = ( iEdg ‘ 𝑇 ) | |
| 5 | 1 2 3 4 | grimprop | ⊢ ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) |
| 6 | fdmrn | ⊢ ( Fun ( iEdg ‘ 𝑇 ) ↔ ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ran ( iEdg ‘ 𝑇 ) ) | |
| 7 | 6 | biimpi | ⊢ ( Fun ( iEdg ‘ 𝑇 ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ran ( iEdg ‘ 𝑇 ) ) |
| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ran ( iEdg ‘ 𝑇 ) ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ran ( iEdg ‘ 𝑇 ) ) |
| 10 | funfn | ⊢ ( Fun ( iEdg ‘ 𝑇 ) ↔ ( iEdg ‘ 𝑇 ) Fn dom ( iEdg ‘ 𝑇 ) ) | |
| 11 | 10 | biimpi | ⊢ ( Fun ( iEdg ‘ 𝑇 ) → ( iEdg ‘ 𝑇 ) Fn dom ( iEdg ‘ 𝑇 ) ) |
| 12 | 11 | 3ad2ant3 | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( iEdg ‘ 𝑇 ) Fn dom ( iEdg ‘ 𝑇 ) ) |
| 13 | f1ofo | ⊢ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) → 𝑗 : dom ( iEdg ‘ 𝑆 ) –onto→ dom ( iEdg ‘ 𝑇 ) ) | |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → 𝑗 : dom ( iEdg ‘ 𝑆 ) –onto→ dom ( iEdg ‘ 𝑇 ) ) |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → 𝑗 : dom ( iEdg ‘ 𝑆 ) –onto→ dom ( iEdg ‘ 𝑇 ) ) |
| 16 | foelcdmi | ⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –onto→ dom ( iEdg ‘ 𝑇 ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ) → ∃ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( 𝑗 ‘ 𝑦 ) = 𝑥 ) | |
| 17 | 15 16 | sylan | ⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ) → ∃ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( 𝑗 ‘ 𝑦 ) = 𝑥 ) |
| 18 | 17 | ex | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) → ∃ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( 𝑗 ‘ 𝑦 ) = 𝑥 ) ) |
| 19 | 2fveq3 | ⊢ ( 𝑖 = 𝑦 → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ) | |
| 20 | fveq2 | ⊢ ( 𝑖 = 𝑦 → ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) | |
| 21 | 20 | imaeq2d | ⊢ ( 𝑖 = 𝑦 → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) |
| 22 | 19 21 | eqeq12d | ⊢ ( 𝑖 = 𝑦 → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
| 23 | 22 | rspcv | ⊢ ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
| 25 | f1ofun | ⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → Fun 𝐹 ) | |
| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → Fun 𝐹 ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → Fun 𝐹 ) |
| 28 | fvex | ⊢ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ V | |
| 29 | 28 | a1i | ⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ V ) |
| 30 | funimaexg | ⊢ ( ( Fun 𝐹 ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ V ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ V ) | |
| 31 | 27 29 30 | syl2an2r | ⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ V ) |
| 32 | f1of | ⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → 𝐹 : ( Vtx ‘ 𝑆 ) ⟶ ( Vtx ‘ 𝑇 ) ) | |
| 33 | 32 | fimassd | ⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝑇 ) ) |
| 34 | 33 | 3ad2ant1 | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝑇 ) ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝑇 ) ) |
| 36 | 35 | adantr | ⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝑇 ) ) |
| 37 | 31 36 | elpwd | ⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ 𝒫 ( Vtx ‘ 𝑇 ) ) |
| 38 | f1odm | ⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → dom 𝐹 = ( Vtx ‘ 𝑆 ) ) | |
| 39 | 38 | adantr | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → dom 𝐹 = ( Vtx ‘ 𝑆 ) ) |
| 40 | 39 | adantr | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → dom 𝐹 = ( Vtx ‘ 𝑆 ) ) |
| 41 | 40 | ineq1d | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) = ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) |
| 42 | ffvelcdm | ⊢ ( ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) | |
| 43 | 42 | ex | ⊢ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
| 44 | 43 | adantl | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
| 45 | eldifsn | ⊢ ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ↔ ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) ) | |
| 46 | 28 | elpw | ⊢ ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ↔ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ) |
| 47 | 45 46 | bianbi | ⊢ ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ↔ ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) ) |
| 48 | sseqin2 | ⊢ ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ↔ ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) | |
| 49 | 48 | biimpi | ⊢ ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) |
| 50 | 49 | adantr | ⊢ ( ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) |
| 51 | simpr | ⊢ ( ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) | |
| 52 | 50 51 | eqnetrd | ⊢ ( ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) |
| 53 | 52 | a1i | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) ) |
| 54 | 47 53 | biimtrid | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) ) |
| 55 | 44 54 | syld | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) ) |
| 56 | 55 | imp | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) |
| 57 | 41 56 | eqnetrd | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) |
| 58 | 57 | ex | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) ) |
| 59 | 58 | 3adant2 | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) ) |
| 60 | 59 | adantr | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) ) |
| 61 | 60 | imp | ⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) |
| 62 | 61 | imadisjlnd | ⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) |
| 63 | eldifsn | ⊢ ( ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ↔ ( ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ 𝒫 ( Vtx ‘ 𝑇 ) ∧ ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) ) | |
| 64 | 37 62 63 | sylanbrc | ⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) |
| 65 | 64 | adantr | ⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) |
| 66 | eleq1 | ⊢ ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ↔ ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) | |
| 67 | 66 | adantl | ⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ↔ ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
| 68 | 65 67 | mpbird | ⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) |
| 69 | fveq2 | ⊢ ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) | |
| 70 | 69 | eleq1d | ⊢ ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ↔ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
| 71 | 68 70 | syl5ibcom | ⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
| 72 | 71 | ex | ⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
| 73 | 24 72 | syld | ⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
| 74 | 73 | ex | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) |
| 75 | 74 | com23 | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) |
| 76 | 75 | ex | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) ) |
| 77 | 76 | 3imp | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
| 78 | 77 | rexlimdv | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( ∃ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
| 79 | 18 78 | syld | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
| 80 | 79 | ralrimiv | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) |
| 81 | 80 | 3exp | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
| 82 | 81 | 3exp | ⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) ) |
| 83 | 82 | com35 | ⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) ) |
| 84 | 83 | impd | ⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) |
| 85 | 84 | 3imp | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
| 86 | 85 | imp | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) |
| 87 | fnfvrnss | ⊢ ( ( ( iEdg ‘ 𝑇 ) Fn dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) → ran ( iEdg ‘ 𝑇 ) ⊆ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) | |
| 88 | 12 86 87 | syl2an2r | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ran ( iEdg ‘ 𝑇 ) ⊆ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) |
| 89 | 9 88 | fssd | ⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) |
| 90 | 89 | ex | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
| 91 | 90 | 3exp | ⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) |
| 92 | 91 | exlimdv | ⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) |
| 93 | 92 | imp | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
| 94 | 5 93 | syl | ⊢ ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
| 95 | 94 | impcom | ⊢ ( ( Fun ( iEdg ‘ 𝑇 ) ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
| 96 | grimdmrel | ⊢ Rel dom GraphIso | |
| 97 | 96 | ovrcl | ⊢ ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) |
| 98 | 1 3 | isuhgr | ⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ UHGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
| 99 | 98 | adantr | ⊢ ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑆 ∈ UHGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
| 100 | 2 4 | isuhgr | ⊢ ( 𝑇 ∈ V → ( 𝑇 ∈ UHGraph ↔ ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
| 101 | 100 | adantl | ⊢ ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑇 ∈ UHGraph ↔ ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
| 102 | 99 101 | imbi12d | ⊢ ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( ( 𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph ) ↔ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
| 103 | 97 102 | syl | ⊢ ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( ( 𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph ) ↔ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
| 104 | 103 | adantl | ⊢ ( ( Fun ( iEdg ‘ 𝑇 ) ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( ( 𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph ) ↔ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
| 105 | 95 104 | mpbird | ⊢ ( ( Fun ( iEdg ‘ 𝑇 ) ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( 𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph ) ) |
| 106 | 105 | ex | ⊢ ( Fun ( iEdg ‘ 𝑇 ) → ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( 𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph ) ) ) |
| 107 | 106 | 3imp31 | ⊢ ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → 𝑇 ∈ UHGraph ) |