This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a graph isomorphism between a hypergraph and a class with an edge function, the class is also a hypergraph. (Contributed by AV, 2-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grimuhgr | |- ( ( S e. UHGraph /\ F e. ( S GraphIso T ) /\ Fun ( iEdg ` T ) ) -> T e. UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` S ) = ( Vtx ` S ) |
|
| 2 | eqid | |- ( Vtx ` T ) = ( Vtx ` T ) |
|
| 3 | eqid | |- ( iEdg ` S ) = ( iEdg ` S ) |
|
| 4 | eqid | |- ( iEdg ` T ) = ( iEdg ` T ) |
|
| 5 | 1 2 3 4 | grimprop | |- ( F e. ( S GraphIso T ) -> ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) ) |
| 6 | fdmrn | |- ( Fun ( iEdg ` T ) <-> ( iEdg ` T ) : dom ( iEdg ` T ) --> ran ( iEdg ` T ) ) |
|
| 7 | 6 | biimpi | |- ( Fun ( iEdg ` T ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ran ( iEdg ` T ) ) |
| 8 | 7 | 3ad2ant3 | |- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ Fun ( iEdg ` T ) ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ran ( iEdg ` T ) ) |
| 9 | 8 | adantr | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ Fun ( iEdg ` T ) ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ran ( iEdg ` T ) ) |
| 10 | funfn | |- ( Fun ( iEdg ` T ) <-> ( iEdg ` T ) Fn dom ( iEdg ` T ) ) |
|
| 11 | 10 | biimpi | |- ( Fun ( iEdg ` T ) -> ( iEdg ` T ) Fn dom ( iEdg ` T ) ) |
| 12 | 11 | 3ad2ant3 | |- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ Fun ( iEdg ` T ) ) -> ( iEdg ` T ) Fn dom ( iEdg ` T ) ) |
| 13 | f1ofo | |- ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) -> j : dom ( iEdg ` S ) -onto-> dom ( iEdg ` T ) ) |
|
| 14 | 13 | 3ad2ant2 | |- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> j : dom ( iEdg ` S ) -onto-> dom ( iEdg ` T ) ) |
| 15 | 14 | 3ad2ant1 | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> j : dom ( iEdg ` S ) -onto-> dom ( iEdg ` T ) ) |
| 16 | foelcdmi | |- ( ( j : dom ( iEdg ` S ) -onto-> dom ( iEdg ` T ) /\ x e. dom ( iEdg ` T ) ) -> E. y e. dom ( iEdg ` S ) ( j ` y ) = x ) |
|
| 17 | 15 16 | sylan | |- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ x e. dom ( iEdg ` T ) ) -> E. y e. dom ( iEdg ` S ) ( j ` y ) = x ) |
| 18 | 17 | ex | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> ( x e. dom ( iEdg ` T ) -> E. y e. dom ( iEdg ` S ) ( j ` y ) = x ) ) |
| 19 | 2fveq3 | |- ( i = y -> ( ( iEdg ` T ) ` ( j ` i ) ) = ( ( iEdg ` T ) ` ( j ` y ) ) ) |
|
| 20 | fveq2 | |- ( i = y -> ( ( iEdg ` S ) ` i ) = ( ( iEdg ` S ) ` y ) ) |
|
| 21 | 20 | imaeq2d | |- ( i = y -> ( F " ( ( iEdg ` S ) ` i ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) |
| 22 | 19 21 | eqeq12d | |- ( i = y -> ( ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) <-> ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
| 23 | 22 | rspcv | |- ( y e. dom ( iEdg ` S ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
| 24 | 23 | adantl | |- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
| 25 | f1ofun | |- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> Fun F ) |
|
| 26 | 25 | 3ad2ant1 | |- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> Fun F ) |
| 27 | 26 | adantr | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) -> Fun F ) |
| 28 | fvex | |- ( ( iEdg ` S ) ` y ) e. _V |
|
| 29 | 28 | a1i | |- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` y ) e. _V ) |
| 30 | funimaexg | |- ( ( Fun F /\ ( ( iEdg ` S ) ` y ) e. _V ) -> ( F " ( ( iEdg ` S ) ` y ) ) e. _V ) |
|
| 31 | 27 29 30 | syl2an2r | |- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) e. _V ) |
| 32 | f1of | |- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> F : ( Vtx ` S ) --> ( Vtx ` T ) ) |
|
| 33 | 32 | fimassd | |- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> ( F " ( ( iEdg ` S ) ` y ) ) C_ ( Vtx ` T ) ) |
| 34 | 33 | 3ad2ant1 | |- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) C_ ( Vtx ` T ) ) |
| 35 | 34 | adantr | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) C_ ( Vtx ` T ) ) |
| 36 | 35 | adantr | |- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) C_ ( Vtx ` T ) ) |
| 37 | 31 36 | elpwd | |- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) e. ~P ( Vtx ` T ) ) |
| 38 | f1odm | |- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> dom F = ( Vtx ` S ) ) |
|
| 39 | 38 | adantr | |- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> dom F = ( Vtx ` S ) ) |
| 40 | 39 | adantr | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ y e. dom ( iEdg ` S ) ) -> dom F = ( Vtx ` S ) ) |
| 41 | 40 | ineq1d | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ y e. dom ( iEdg ` S ) ) -> ( dom F i^i ( ( iEdg ` S ) ` y ) ) = ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) ) |
| 42 | ffvelcdm | |- ( ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) /\ y e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` y ) e. ( ~P ( Vtx ` S ) \ { (/) } ) ) |
|
| 43 | 42 | ex | |- ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( y e. dom ( iEdg ` S ) -> ( ( iEdg ` S ) ` y ) e. ( ~P ( Vtx ` S ) \ { (/) } ) ) ) |
| 44 | 43 | adantl | |- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( y e. dom ( iEdg ` S ) -> ( ( iEdg ` S ) ` y ) e. ( ~P ( Vtx ` S ) \ { (/) } ) ) ) |
| 45 | eldifsn | |- ( ( ( iEdg ` S ) ` y ) e. ( ~P ( Vtx ` S ) \ { (/) } ) <-> ( ( ( iEdg ` S ) ` y ) e. ~P ( Vtx ` S ) /\ ( ( iEdg ` S ) ` y ) =/= (/) ) ) |
|
| 46 | 28 | elpw | |- ( ( ( iEdg ` S ) ` y ) e. ~P ( Vtx ` S ) <-> ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) ) |
| 47 | 45 46 | bianbi | |- ( ( ( iEdg ` S ) ` y ) e. ( ~P ( Vtx ` S ) \ { (/) } ) <-> ( ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) /\ ( ( iEdg ` S ) ` y ) =/= (/) ) ) |
| 48 | sseqin2 | |- ( ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) <-> ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) = ( ( iEdg ` S ) ` y ) ) |
|
| 49 | 48 | biimpi | |- ( ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) -> ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) = ( ( iEdg ` S ) ` y ) ) |
| 50 | 49 | adantr | |- ( ( ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) /\ ( ( iEdg ` S ) ` y ) =/= (/) ) -> ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) = ( ( iEdg ` S ) ` y ) ) |
| 51 | simpr | |- ( ( ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) /\ ( ( iEdg ` S ) ` y ) =/= (/) ) -> ( ( iEdg ` S ) ` y ) =/= (/) ) |
|
| 52 | 50 51 | eqnetrd | |- ( ( ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) /\ ( ( iEdg ` S ) ` y ) =/= (/) ) -> ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) |
| 53 | 52 | a1i | |- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( ( ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) /\ ( ( iEdg ` S ) ` y ) =/= (/) ) -> ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) ) |
| 54 | 47 53 | biimtrid | |- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( ( ( iEdg ` S ) ` y ) e. ( ~P ( Vtx ` S ) \ { (/) } ) -> ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) ) |
| 55 | 44 54 | syld | |- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( y e. dom ( iEdg ` S ) -> ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) ) |
| 56 | 55 | imp | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ y e. dom ( iEdg ` S ) ) -> ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) |
| 57 | 41 56 | eqnetrd | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ y e. dom ( iEdg ` S ) ) -> ( dom F i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) |
| 58 | 57 | ex | |- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( y e. dom ( iEdg ` S ) -> ( dom F i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) ) |
| 59 | 58 | 3adant2 | |- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( y e. dom ( iEdg ` S ) -> ( dom F i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) ) |
| 60 | 59 | adantr | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) -> ( y e. dom ( iEdg ` S ) -> ( dom F i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) ) |
| 61 | 60 | imp | |- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( dom F i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) |
| 62 | 61 | imadisjlnd | |- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) =/= (/) ) |
| 63 | eldifsn | |- ( ( F " ( ( iEdg ` S ) ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) <-> ( ( F " ( ( iEdg ` S ) ` y ) ) e. ~P ( Vtx ` T ) /\ ( F " ( ( iEdg ` S ) ` y ) ) =/= (/) ) ) |
|
| 64 | 37 62 63 | sylanbrc | |- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) |
| 65 | 64 | adantr | |- ( ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) |
| 66 | eleq1 | |- ( ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) -> ( ( ( iEdg ` T ) ` ( j ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) <-> ( F " ( ( iEdg ` S ) ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
|
| 67 | 66 | adantl | |- ( ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) -> ( ( ( iEdg ` T ) ` ( j ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) <-> ( F " ( ( iEdg ` S ) ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
| 68 | 65 67 | mpbird | |- ( ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) -> ( ( iEdg ` T ) ` ( j ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) |
| 69 | fveq2 | |- ( ( j ` y ) = x -> ( ( iEdg ` T ) ` ( j ` y ) ) = ( ( iEdg ` T ) ` x ) ) |
|
| 70 | 69 | eleq1d | |- ( ( j ` y ) = x -> ( ( ( iEdg ` T ) ` ( j ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) <-> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
| 71 | 68 70 | syl5ibcom | |- ( ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) -> ( ( j ` y ) = x -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
| 72 | 71 | ex | |- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) -> ( ( j ` y ) = x -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
| 73 | 24 72 | syld | |- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( ( j ` y ) = x -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
| 74 | 73 | ex | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) -> ( y e. dom ( iEdg ` S ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( ( j ` y ) = x -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) ) |
| 75 | 74 | com23 | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( y e. dom ( iEdg ` S ) -> ( ( j ` y ) = x -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) ) |
| 76 | 75 | ex | |- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( Fun ( iEdg ` T ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( y e. dom ( iEdg ` S ) -> ( ( j ` y ) = x -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) ) ) |
| 77 | 76 | 3imp | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> ( y e. dom ( iEdg ` S ) -> ( ( j ` y ) = x -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
| 78 | 77 | rexlimdv | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> ( E. y e. dom ( iEdg ` S ) ( j ` y ) = x -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
| 79 | 18 78 | syld | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> ( x e. dom ( iEdg ` T ) -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
| 80 | 79 | ralrimiv | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> A. x e. dom ( iEdg ` T ) ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) |
| 81 | 80 | 3exp | |- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( Fun ( iEdg ` T ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> A. x e. dom ( iEdg ` T ) ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
| 82 | 81 | 3exp | |- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( Fun ( iEdg ` T ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> A. x e. dom ( iEdg ` T ) ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) ) ) |
| 83 | 82 | com35 | |- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( Fun ( iEdg ` T ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> A. x e. dom ( iEdg ` T ) ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) ) ) |
| 84 | 83 | impd | |- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> ( ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> ( Fun ( iEdg ` T ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> A. x e. dom ( iEdg ` T ) ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) ) |
| 85 | 84 | 3imp | |- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ Fun ( iEdg ` T ) ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> A. x e. dom ( iEdg ` T ) ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
| 86 | 85 | imp | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ Fun ( iEdg ` T ) ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> A. x e. dom ( iEdg ` T ) ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) |
| 87 | fnfvrnss | |- ( ( ( iEdg ` T ) Fn dom ( iEdg ` T ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) -> ran ( iEdg ` T ) C_ ( ~P ( Vtx ` T ) \ { (/) } ) ) |
|
| 88 | 12 86 87 | syl2an2r | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ Fun ( iEdg ` T ) ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ran ( iEdg ` T ) C_ ( ~P ( Vtx ` T ) \ { (/) } ) ) |
| 89 | 9 88 | fssd | |- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ Fun ( iEdg ` T ) ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) |
| 90 | 89 | ex | |- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ Fun ( iEdg ` T ) ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
| 91 | 90 | 3exp | |- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> ( ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> ( Fun ( iEdg ` T ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) ) |
| 92 | 91 | exlimdv | |- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> ( E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> ( Fun ( iEdg ` T ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) ) |
| 93 | 92 | imp | |- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> ( Fun ( iEdg ` T ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
| 94 | 5 93 | syl | |- ( F e. ( S GraphIso T ) -> ( Fun ( iEdg ` T ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
| 95 | 94 | impcom | |- ( ( Fun ( iEdg ` T ) /\ F e. ( S GraphIso T ) ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
| 96 | grimdmrel | |- Rel dom GraphIso |
|
| 97 | 96 | ovrcl | |- ( F e. ( S GraphIso T ) -> ( S e. _V /\ T e. _V ) ) |
| 98 | 1 3 | isuhgr | |- ( S e. _V -> ( S e. UHGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) ) |
| 99 | 98 | adantr | |- ( ( S e. _V /\ T e. _V ) -> ( S e. UHGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) ) |
| 100 | 2 4 | isuhgr | |- ( T e. _V -> ( T e. UHGraph <-> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
| 101 | 100 | adantl | |- ( ( S e. _V /\ T e. _V ) -> ( T e. UHGraph <-> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
| 102 | 99 101 | imbi12d | |- ( ( S e. _V /\ T e. _V ) -> ( ( S e. UHGraph -> T e. UHGraph ) <-> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
| 103 | 97 102 | syl | |- ( F e. ( S GraphIso T ) -> ( ( S e. UHGraph -> T e. UHGraph ) <-> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
| 104 | 103 | adantl | |- ( ( Fun ( iEdg ` T ) /\ F e. ( S GraphIso T ) ) -> ( ( S e. UHGraph -> T e. UHGraph ) <-> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
| 105 | 95 104 | mpbird | |- ( ( Fun ( iEdg ` T ) /\ F e. ( S GraphIso T ) ) -> ( S e. UHGraph -> T e. UHGraph ) ) |
| 106 | 105 | ex | |- ( Fun ( iEdg ` T ) -> ( F e. ( S GraphIso T ) -> ( S e. UHGraph -> T e. UHGraph ) ) ) |
| 107 | 106 | 3imp31 | |- ( ( S e. UHGraph /\ F e. ( S GraphIso T ) /\ Fun ( iEdg ` T ) ) -> T e. UHGraph ) |