This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph isomorphisms map triangles onto triangles. (Contributed by AV, 27-Jul-2025) (Proof shortened by AV, 24-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grimgrtri.g | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) | |
| grimgrtri.h | ⊢ ( 𝜑 → 𝐻 ∈ UHGraph ) | ||
| grimgrtri.n | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) | ||
| grimgrtri.t | ⊢ ( 𝜑 → 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ) | ||
| Assertion | grimgrtri | ⊢ ( 𝜑 → ( 𝐹 “ 𝑇 ) ∈ ( GrTriangles ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grimgrtri.g | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) | |
| 2 | grimgrtri.h | ⊢ ( 𝜑 → 𝐻 ∈ UHGraph ) | |
| 3 | grimgrtri.n | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 4 | grimgrtri.t | ⊢ ( 𝜑 → 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ) | |
| 5 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 7 | 5 6 | grtriprop | ⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → ∃ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → ∃ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 9 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 10 | 5 9 | grimf1o | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
| 11 | f1of1 | ⊢ ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) | |
| 12 | 3 10 11 | 3syl | ⊢ ( 𝜑 → 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 13 | 12 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 14 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑎 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 15 | 14 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → 𝑎 ∈ ( Vtx ‘ 𝐺 ) ) |
| 16 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 17 | 16 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) |
| 18 | 17 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) |
| 19 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 20 | 15 18 19 | 3jca | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 21 | 3simpa | ⊢ ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) | |
| 22 | 21 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) |
| 23 | grtrimap | ⊢ ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ) ) ) | |
| 24 | 23 | imp | ⊢ ( ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( ( ( 𝐹 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ) ) |
| 25 | 13 20 22 24 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ) ) |
| 26 | eqid | ⊢ ( Edg ‘ 𝐻 ) = ( Edg ‘ 𝐻 ) | |
| 27 | 5 6 26 | grimedg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ↔ ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) ) ) |
| 28 | 5 6 26 | grimedg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ↔ ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ) ) |
| 29 | 5 6 26 | grimedg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ↔ ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑏 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ) ) |
| 30 | 27 28 29 | 3anbi123d | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑏 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ) ) ) |
| 31 | f1ofn | ⊢ ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝐹 Fn ( Vtx ‘ 𝐺 ) ) | |
| 32 | simpl | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → 𝐹 Fn ( Vtx ‘ 𝐺 ) ) | |
| 33 | simprll | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → 𝑎 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 34 | simprlr | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 35 | fnimapr | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐹 “ { 𝑎 , 𝑏 } ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ) | |
| 36 | 32 33 34 35 | syl3anc | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( 𝐹 “ { 𝑎 , 𝑏 } ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ) |
| 37 | 36 | eleq1d | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 38 | 37 | biimpd | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) → { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 39 | 38 | adantrd | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) → { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 40 | simprr | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 41 | fnimapr | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐹 “ { 𝑎 , 𝑐 } ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ) | |
| 42 | 32 33 40 41 | syl3anc | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( 𝐹 “ { 𝑎 , 𝑐 } ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ) |
| 43 | 42 | eleq1d | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 44 | 43 | biimpd | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) → { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 45 | 44 | adantrd | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) → { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 46 | fnimapr | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐹 “ { 𝑏 , 𝑐 } ) = { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ) | |
| 47 | 32 34 40 46 | syl3anc | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( 𝐹 “ { 𝑏 , 𝑐 } ) = { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ) |
| 48 | 47 | eleq1d | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 49 | 48 | biimpd | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) → { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 50 | 49 | adantrd | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑏 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) → { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 51 | 39 45 50 | 3anim123d | ⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑏 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 52 | 51 | ex | ⊢ ( 𝐹 Fn ( Vtx ‘ 𝐺 ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑏 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 53 | 52 | com23 | ⊢ ( 𝐹 Fn ( Vtx ‘ 𝐺 ) → ( ( ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑏 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 54 | 10 31 53 | 3syl | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑏 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 55 | 54 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( ( ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑏 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 56 | 30 55 | sylbid | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 57 | 56 | 2a1d | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } → ( ( ♯ ‘ 𝑇 ) = 3 → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) ) |
| 58 | 57 | 3impd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 59 | 58 | com23 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 60 | 1 2 3 59 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 61 | 60 | impl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 62 | 61 | imp | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 63 | tpeq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → { 𝑥 , 𝑦 , 𝑧 } = { ( 𝐹 ‘ 𝑎 ) , 𝑦 , 𝑧 } ) | |
| 64 | 63 | eqeq2d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ↔ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , 𝑦 , 𝑧 } ) ) |
| 65 | preq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → { 𝑥 , 𝑦 } = { ( 𝐹 ‘ 𝑎 ) , 𝑦 } ) | |
| 66 | 65 | eleq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 67 | preq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → { 𝑥 , 𝑧 } = { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ) | |
| 68 | 67 | eleq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 69 | 66 68 | 3anbi12d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ↔ ( { ( 𝐹 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 70 | 64 69 | 3anbi13d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { ( 𝐹 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 71 | tpeq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → { ( 𝐹 ‘ 𝑎 ) , 𝑦 , 𝑧 } = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , 𝑧 } ) | |
| 72 | 71 | eqeq2d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , 𝑦 , 𝑧 } ↔ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , 𝑧 } ) ) |
| 73 | preq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → { ( 𝐹 ‘ 𝑎 ) , 𝑦 } = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ) | |
| 74 | 73 | eleq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( { ( 𝐹 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 75 | preq1 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → { 𝑦 , 𝑧 } = { ( 𝐹 ‘ 𝑏 ) , 𝑧 } ) | |
| 76 | 75 | eleq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 77 | 74 76 | 3anbi13d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( { ( 𝐹 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ↔ ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 78 | 72 77 | 3anbi13d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { ( 𝐹 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 79 | tpeq3 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , 𝑧 } = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ) | |
| 80 | 79 | eqeq2d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , 𝑧 } ↔ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ) ) |
| 81 | preq2 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → { ( 𝐹 ‘ 𝑎 ) , 𝑧 } = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ) | |
| 82 | 81 | eleq1d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 83 | preq2 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → { ( 𝐹 ‘ 𝑏 ) , 𝑧 } = { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ) | |
| 84 | 83 | eleq1d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( { ( 𝐹 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
| 85 | 82 84 | 3anbi23d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ↔ ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 86 | 80 85 | 3anbi13d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 87 | 70 78 86 | rspc3ev | ⊢ ( ( ( ( 𝐹 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 88 | 87 | 3exp2 | ⊢ ( ( ( 𝐹 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) → ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } → ( ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 → ( ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) ) |
| 89 | 88 | 3imp | ⊢ ( ( ( ( 𝐹 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ) → ( ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 90 | 25 62 89 | sylc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 91 | 90 | rexlimdva2 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 92 | 91 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
| 93 | 8 92 | mpd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 94 | 9 26 | isgrtri | ⊢ ( ( 𝐹 “ 𝑇 ) ∈ ( GrTriangles ‘ 𝐻 ) ↔ ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
| 95 | 93 94 | sylibr | ⊢ ( 𝜑 → ( 𝐹 “ 𝑇 ) ∈ ( GrTriangles ‘ 𝐻 ) ) |