This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 3-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspc3v.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | |
| rspc3v.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) | ||
| rspc3v.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜃 ↔ 𝜓 ) ) | ||
| Assertion | rspc3ev | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ 𝜓 ) → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ∃ 𝑧 ∈ 𝑇 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc3v.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | rspc3v.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) | |
| 3 | rspc3v.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜃 ↔ 𝜓 ) ) | |
| 4 | simpl1 | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ 𝜓 ) → 𝐴 ∈ 𝑅 ) | |
| 5 | simpl2 | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ 𝜓 ) → 𝐵 ∈ 𝑆 ) | |
| 6 | 3 | rspcev | ⊢ ( ( 𝐶 ∈ 𝑇 ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝑇 𝜃 ) |
| 7 | 6 | 3ad2antl3 | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝑇 𝜃 ) |
| 8 | 1 | rexbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑧 ∈ 𝑇 𝜑 ↔ ∃ 𝑧 ∈ 𝑇 𝜒 ) ) |
| 9 | 2 | rexbidv | ⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑧 ∈ 𝑇 𝜒 ↔ ∃ 𝑧 ∈ 𝑇 𝜃 ) ) |
| 10 | 8 9 | rspc2ev | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∃ 𝑧 ∈ 𝑇 𝜃 ) → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ∃ 𝑧 ∈ 𝑇 𝜑 ) |
| 11 | 4 5 7 10 | syl3anc | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ 𝜓 ) → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ∃ 𝑧 ∈ 𝑇 𝜑 ) |