This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph isomorphisms map triangles onto triangles. (Contributed by AV, 27-Jul-2025) (Proof shortened by AV, 24-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grimgrtri.g | |- ( ph -> G e. UHGraph ) |
|
| grimgrtri.h | |- ( ph -> H e. UHGraph ) |
||
| grimgrtri.n | |- ( ph -> F e. ( G GraphIso H ) ) |
||
| grimgrtri.t | |- ( ph -> T e. ( GrTriangles ` G ) ) |
||
| Assertion | grimgrtri | |- ( ph -> ( F " T ) e. ( GrTriangles ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grimgrtri.g | |- ( ph -> G e. UHGraph ) |
|
| 2 | grimgrtri.h | |- ( ph -> H e. UHGraph ) |
|
| 3 | grimgrtri.n | |- ( ph -> F e. ( G GraphIso H ) ) |
|
| 4 | grimgrtri.t | |- ( ph -> T e. ( GrTriangles ` G ) ) |
|
| 5 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 6 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 7 | 5 6 | grtriprop | |- ( T e. ( GrTriangles ` G ) -> E. a e. ( Vtx ` G ) E. b e. ( Vtx ` G ) E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) |
| 8 | 4 7 | syl | |- ( ph -> E. a e. ( Vtx ` G ) E. b e. ( Vtx ` G ) E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) |
| 9 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 10 | 5 9 | grimf1o | |- ( F e. ( G GraphIso H ) -> F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
| 11 | f1of1 | |- ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
|
| 12 | 3 10 11 | 3syl | |- ( ph -> F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
| 13 | 12 | ad3antrrr | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
| 14 | simplrl | |- ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) -> a e. ( Vtx ` G ) ) |
|
| 15 | 14 | adantr | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> a e. ( Vtx ` G ) ) |
| 16 | simprr | |- ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) -> b e. ( Vtx ` G ) ) |
|
| 17 | 16 | adantr | |- ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) -> b e. ( Vtx ` G ) ) |
| 18 | 17 | adantr | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> b e. ( Vtx ` G ) ) |
| 19 | simplr | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> c e. ( Vtx ` G ) ) |
|
| 20 | 15 18 19 | 3jca | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) ) |
| 21 | 3simpa | |- ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) |
|
| 22 | 21 | adantl | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) |
| 23 | grtrimap | |- ( F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> ( ( ( F ` a ) e. ( Vtx ` H ) /\ ( F ` b ) e. ( Vtx ` H ) /\ ( F ` c ) e. ( Vtx ` H ) ) /\ ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } /\ ( # ` ( F " T ) ) = 3 ) ) ) |
|
| 24 | 23 | imp | |- ( ( F : ( Vtx ` G ) -1-1-> ( Vtx ` H ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( ( ( F ` a ) e. ( Vtx ` H ) /\ ( F ` b ) e. ( Vtx ` H ) /\ ( F ` c ) e. ( Vtx ` H ) ) /\ ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } /\ ( # ` ( F " T ) ) = 3 ) ) |
| 25 | 13 20 22 24 | syl12anc | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> ( ( ( F ` a ) e. ( Vtx ` H ) /\ ( F ` b ) e. ( Vtx ` H ) /\ ( F ` c ) e. ( Vtx ` H ) ) /\ ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } /\ ( # ` ( F " T ) ) = 3 ) ) |
| 26 | eqid | |- ( Edg ` H ) = ( Edg ` H ) |
|
| 27 | 5 6 26 | grimedg | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( { a , b } e. ( Edg ` G ) <-> ( ( F " { a , b } ) e. ( Edg ` H ) /\ { a , b } C_ ( Vtx ` G ) ) ) ) |
| 28 | 5 6 26 | grimedg | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( { a , c } e. ( Edg ` G ) <-> ( ( F " { a , c } ) e. ( Edg ` H ) /\ { a , c } C_ ( Vtx ` G ) ) ) ) |
| 29 | 5 6 26 | grimedg | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( { b , c } e. ( Edg ` G ) <-> ( ( F " { b , c } ) e. ( Edg ` H ) /\ { b , c } C_ ( Vtx ` G ) ) ) ) |
| 30 | 27 28 29 | 3anbi123d | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) <-> ( ( ( F " { a , b } ) e. ( Edg ` H ) /\ { a , b } C_ ( Vtx ` G ) ) /\ ( ( F " { a , c } ) e. ( Edg ` H ) /\ { a , c } C_ ( Vtx ` G ) ) /\ ( ( F " { b , c } ) e. ( Edg ` H ) /\ { b , c } C_ ( Vtx ` G ) ) ) ) ) |
| 31 | f1ofn | |- ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> F Fn ( Vtx ` G ) ) |
|
| 32 | simpl | |- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> F Fn ( Vtx ` G ) ) |
|
| 33 | simprll | |- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> a e. ( Vtx ` G ) ) |
|
| 34 | simprlr | |- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> b e. ( Vtx ` G ) ) |
|
| 35 | fnimapr | |- ( ( F Fn ( Vtx ` G ) /\ a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) -> ( F " { a , b } ) = { ( F ` a ) , ( F ` b ) } ) |
|
| 36 | 32 33 34 35 | syl3anc | |- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( F " { a , b } ) = { ( F ` a ) , ( F ` b ) } ) |
| 37 | 36 | eleq1d | |- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( F " { a , b } ) e. ( Edg ` H ) <-> { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) ) ) |
| 38 | 37 | biimpd | |- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( F " { a , b } ) e. ( Edg ` H ) -> { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) ) ) |
| 39 | 38 | adantrd | |- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( ( F " { a , b } ) e. ( Edg ` H ) /\ { a , b } C_ ( Vtx ` G ) ) -> { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) ) ) |
| 40 | simprr | |- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> c e. ( Vtx ` G ) ) |
|
| 41 | fnimapr | |- ( ( F Fn ( Vtx ` G ) /\ a e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) -> ( F " { a , c } ) = { ( F ` a ) , ( F ` c ) } ) |
|
| 42 | 32 33 40 41 | syl3anc | |- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( F " { a , c } ) = { ( F ` a ) , ( F ` c ) } ) |
| 43 | 42 | eleq1d | |- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( F " { a , c } ) e. ( Edg ` H ) <-> { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 44 | 43 | biimpd | |- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( F " { a , c } ) e. ( Edg ` H ) -> { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 45 | 44 | adantrd | |- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( ( F " { a , c } ) e. ( Edg ` H ) /\ { a , c } C_ ( Vtx ` G ) ) -> { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 46 | fnimapr | |- ( ( F Fn ( Vtx ` G ) /\ b e. ( Vtx ` G ) /\ c e. ( Vtx ` G ) ) -> ( F " { b , c } ) = { ( F ` b ) , ( F ` c ) } ) |
|
| 47 | 32 34 40 46 | syl3anc | |- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( F " { b , c } ) = { ( F ` b ) , ( F ` c ) } ) |
| 48 | 47 | eleq1d | |- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( F " { b , c } ) e. ( Edg ` H ) <-> { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 49 | 48 | biimpd | |- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( F " { b , c } ) e. ( Edg ` H ) -> { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 50 | 49 | adantrd | |- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( ( F " { b , c } ) e. ( Edg ` H ) /\ { b , c } C_ ( Vtx ` G ) ) -> { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 51 | 39 45 50 | 3anim123d | |- ( ( F Fn ( Vtx ` G ) /\ ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) ) -> ( ( ( ( F " { a , b } ) e. ( Edg ` H ) /\ { a , b } C_ ( Vtx ` G ) ) /\ ( ( F " { a , c } ) e. ( Edg ` H ) /\ { a , c } C_ ( Vtx ` G ) ) /\ ( ( F " { b , c } ) e. ( Edg ` H ) /\ { b , c } C_ ( Vtx ` G ) ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) |
| 52 | 51 | ex | |- ( F Fn ( Vtx ` G ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( ( ( ( F " { a , b } ) e. ( Edg ` H ) /\ { a , b } C_ ( Vtx ` G ) ) /\ ( ( F " { a , c } ) e. ( Edg ` H ) /\ { a , c } C_ ( Vtx ` G ) ) /\ ( ( F " { b , c } ) e. ( Edg ` H ) /\ { b , c } C_ ( Vtx ` G ) ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 53 | 52 | com23 | |- ( F Fn ( Vtx ` G ) -> ( ( ( ( F " { a , b } ) e. ( Edg ` H ) /\ { a , b } C_ ( Vtx ` G ) ) /\ ( ( F " { a , c } ) e. ( Edg ` H ) /\ { a , c } C_ ( Vtx ` G ) ) /\ ( ( F " { b , c } ) e. ( Edg ` H ) /\ { b , c } C_ ( Vtx ` G ) ) ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 54 | 10 31 53 | 3syl | |- ( F e. ( G GraphIso H ) -> ( ( ( ( F " { a , b } ) e. ( Edg ` H ) /\ { a , b } C_ ( Vtx ` G ) ) /\ ( ( F " { a , c } ) e. ( Edg ` H ) /\ { a , c } C_ ( Vtx ` G ) ) /\ ( ( F " { b , c } ) e. ( Edg ` H ) /\ { b , c } C_ ( Vtx ` G ) ) ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 55 | 54 | 3ad2ant3 | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( ( ( ( F " { a , b } ) e. ( Edg ` H ) /\ { a , b } C_ ( Vtx ` G ) ) /\ ( ( F " { a , c } ) e. ( Edg ` H ) /\ { a , c } C_ ( Vtx ` G ) ) /\ ( ( F " { b , c } ) e. ( Edg ` H ) /\ { b , c } C_ ( Vtx ` G ) ) ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 56 | 30 55 | sylbid | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 57 | 56 | 2a1d | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( T = { a , b , c } -> ( ( # ` T ) = 3 -> ( ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) ) ) |
| 58 | 57 | 3impd | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 59 | 58 | com23 | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 60 | 1 2 3 59 | syl3anc | |- ( ph -> ( ( ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) /\ c e. ( Vtx ` G ) ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 61 | 60 | impl | |- ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) -> ( ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) |
| 62 | 61 | imp | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 63 | tpeq1 | |- ( x = ( F ` a ) -> { x , y , z } = { ( F ` a ) , y , z } ) |
|
| 64 | 63 | eqeq2d | |- ( x = ( F ` a ) -> ( ( F " T ) = { x , y , z } <-> ( F " T ) = { ( F ` a ) , y , z } ) ) |
| 65 | preq1 | |- ( x = ( F ` a ) -> { x , y } = { ( F ` a ) , y } ) |
|
| 66 | 65 | eleq1d | |- ( x = ( F ` a ) -> ( { x , y } e. ( Edg ` H ) <-> { ( F ` a ) , y } e. ( Edg ` H ) ) ) |
| 67 | preq1 | |- ( x = ( F ` a ) -> { x , z } = { ( F ` a ) , z } ) |
|
| 68 | 67 | eleq1d | |- ( x = ( F ` a ) -> ( { x , z } e. ( Edg ` H ) <-> { ( F ` a ) , z } e. ( Edg ` H ) ) ) |
| 69 | 66 68 | 3anbi12d | |- ( x = ( F ` a ) -> ( ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) <-> ( { ( F ` a ) , y } e. ( Edg ` H ) /\ { ( F ` a ) , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) |
| 70 | 64 69 | 3anbi13d | |- ( x = ( F ` a ) -> ( ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) <-> ( ( F " T ) = { ( F ` a ) , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { ( F ` a ) , y } e. ( Edg ` H ) /\ { ( F ` a ) , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) |
| 71 | tpeq2 | |- ( y = ( F ` b ) -> { ( F ` a ) , y , z } = { ( F ` a ) , ( F ` b ) , z } ) |
|
| 72 | 71 | eqeq2d | |- ( y = ( F ` b ) -> ( ( F " T ) = { ( F ` a ) , y , z } <-> ( F " T ) = { ( F ` a ) , ( F ` b ) , z } ) ) |
| 73 | preq2 | |- ( y = ( F ` b ) -> { ( F ` a ) , y } = { ( F ` a ) , ( F ` b ) } ) |
|
| 74 | 73 | eleq1d | |- ( y = ( F ` b ) -> ( { ( F ` a ) , y } e. ( Edg ` H ) <-> { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) ) ) |
| 75 | preq1 | |- ( y = ( F ` b ) -> { y , z } = { ( F ` b ) , z } ) |
|
| 76 | 75 | eleq1d | |- ( y = ( F ` b ) -> ( { y , z } e. ( Edg ` H ) <-> { ( F ` b ) , z } e. ( Edg ` H ) ) ) |
| 77 | 74 76 | 3anbi13d | |- ( y = ( F ` b ) -> ( ( { ( F ` a ) , y } e. ( Edg ` H ) /\ { ( F ` a ) , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) <-> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , z } e. ( Edg ` H ) /\ { ( F ` b ) , z } e. ( Edg ` H ) ) ) ) |
| 78 | 72 77 | 3anbi13d | |- ( y = ( F ` b ) -> ( ( ( F " T ) = { ( F ` a ) , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { ( F ` a ) , y } e. ( Edg ` H ) /\ { ( F ` a ) , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) <-> ( ( F " T ) = { ( F ` a ) , ( F ` b ) , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , z } e. ( Edg ` H ) /\ { ( F ` b ) , z } e. ( Edg ` H ) ) ) ) ) |
| 79 | tpeq3 | |- ( z = ( F ` c ) -> { ( F ` a ) , ( F ` b ) , z } = { ( F ` a ) , ( F ` b ) , ( F ` c ) } ) |
|
| 80 | 79 | eqeq2d | |- ( z = ( F ` c ) -> ( ( F " T ) = { ( F ` a ) , ( F ` b ) , z } <-> ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } ) ) |
| 81 | preq2 | |- ( z = ( F ` c ) -> { ( F ` a ) , z } = { ( F ` a ) , ( F ` c ) } ) |
|
| 82 | 81 | eleq1d | |- ( z = ( F ` c ) -> ( { ( F ` a ) , z } e. ( Edg ` H ) <-> { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 83 | preq2 | |- ( z = ( F ` c ) -> { ( F ` b ) , z } = { ( F ` b ) , ( F ` c ) } ) |
|
| 84 | 83 | eleq1d | |- ( z = ( F ` c ) -> ( { ( F ` b ) , z } e. ( Edg ` H ) <-> { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) |
| 85 | 82 84 | 3anbi23d | |- ( z = ( F ` c ) -> ( ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , z } e. ( Edg ` H ) /\ { ( F ` b ) , z } e. ( Edg ` H ) ) <-> ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) |
| 86 | 80 85 | 3anbi13d | |- ( z = ( F ` c ) -> ( ( ( F " T ) = { ( F ` a ) , ( F ` b ) , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , z } e. ( Edg ` H ) /\ { ( F ` b ) , z } e. ( Edg ` H ) ) ) <-> ( ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } /\ ( # ` ( F " T ) ) = 3 /\ ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) ) |
| 87 | 70 78 86 | rspc3ev | |- ( ( ( ( F ` a ) e. ( Vtx ` H ) /\ ( F ` b ) e. ( Vtx ` H ) /\ ( F ` c ) e. ( Vtx ` H ) ) /\ ( ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } /\ ( # ` ( F " T ) ) = 3 /\ ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) ) ) -> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) |
| 88 | 87 | 3exp2 | |- ( ( ( F ` a ) e. ( Vtx ` H ) /\ ( F ` b ) e. ( Vtx ` H ) /\ ( F ` c ) e. ( Vtx ` H ) ) -> ( ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } -> ( ( # ` ( F " T ) ) = 3 -> ( ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) -> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) ) ) |
| 89 | 88 | 3imp | |- ( ( ( ( F ` a ) e. ( Vtx ` H ) /\ ( F ` b ) e. ( Vtx ` H ) /\ ( F ` c ) e. ( Vtx ` H ) ) /\ ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } /\ ( # ` ( F " T ) ) = 3 ) -> ( ( { ( F ` a ) , ( F ` b ) } e. ( Edg ` H ) /\ { ( F ` a ) , ( F ` c ) } e. ( Edg ` H ) /\ { ( F ` b ) , ( F ` c ) } e. ( Edg ` H ) ) -> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) |
| 90 | 25 62 89 | sylc | |- ( ( ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) /\ c e. ( Vtx ` G ) ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) -> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) |
| 91 | 90 | rexlimdva2 | |- ( ( ph /\ ( a e. ( Vtx ` G ) /\ b e. ( Vtx ` G ) ) ) -> ( E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) |
| 92 | 91 | rexlimdvva | |- ( ph -> ( E. a e. ( Vtx ` G ) E. b e. ( Vtx ` G ) E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) -> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) ) |
| 93 | 8 92 | mpd | |- ( ph -> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) |
| 94 | 9 26 | isgrtri | |- ( ( F " T ) e. ( GrTriangles ` H ) <-> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) |
| 95 | 93 94 | sylibr | |- ( ph -> ( F " T ) e. ( GrTriangles ` H ) ) |