This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse image of a normal subgroup under a homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ghmnsgpreima | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ 𝑉 ) ∈ ( NrmSGrp ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsgsubg | ⊢ ( 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) → 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) | |
| 2 | ghmpreima | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ 𝑉 ) ∈ ( SubGrp ‘ 𝑆 ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ 𝑉 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
| 4 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) | |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → 𝑆 ∈ Grp ) |
| 6 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) | |
| 7 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) | |
| 8 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 11 | 9 10 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 12 | 8 11 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 13 | 12 | ffnd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
| 14 | elpreima | ⊢ ( 𝐹 Fn ( Base ‘ 𝑆 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑉 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑉 ) ) ) |
| 16 | 7 15 | mpbid | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑉 ) ) |
| 17 | 16 | simpld | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
| 18 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 19 | 9 18 | grpcl | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 20 | 5 6 17 19 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 21 | eqid | ⊢ ( -g ‘ 𝑆 ) = ( -g ‘ 𝑆 ) | |
| 22 | 9 21 | grpsubcl | ⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 23 | 5 20 6 22 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 24 | eqid | ⊢ ( -g ‘ 𝑇 ) = ( -g ‘ 𝑇 ) | |
| 25 | 9 21 24 | ghmsub | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 26 | 8 20 6 25 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 27 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 28 | 9 18 27 | ghmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 29 | 8 6 17 28 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 30 | 29 | oveq1d | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 31 | 26 30 | eqtrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 32 | simplr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) | |
| 33 | 12 6 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) |
| 34 | 16 | simprd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑉 ) |
| 35 | 10 27 24 | nsgconj | ⊢ ( ( 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ∈ 𝑉 ) |
| 36 | 32 33 34 35 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ∈ 𝑉 ) |
| 37 | 31 36 | eqeltrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ) ∈ 𝑉 ) |
| 38 | elpreima | ⊢ ( 𝐹 Fn ( Base ‘ 𝑆 ) → ( ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ) ∈ 𝑉 ) ) ) | |
| 39 | 13 38 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ) ∈ 𝑉 ) ) ) |
| 40 | 23 37 39 | mpbir2and | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) |
| 41 | 40 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) |
| 42 | 9 18 21 | isnsg3 | ⊢ ( ( ◡ 𝐹 “ 𝑉 ) ∈ ( NrmSGrp ‘ 𝑆 ) ↔ ( ( ◡ 𝐹 “ 𝑉 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 43 | 3 41 42 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ 𝑉 ) ∈ ( NrmSGrp ‘ 𝑆 ) ) |