This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Assuming the GCH, weakly and strongly inaccessible cardinals coincide. Theorem 11.20 of TakeutiZaring p. 106. (Contributed by Mario Carneiro, 5-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchina | ⊢ ( GCH = V → Inaccw = Inacc ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) → 𝑥 ∈ Inaccw ) | |
| 2 | idd | ⊢ ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) → ( 𝑥 ≠ ∅ → 𝑥 ≠ ∅ ) ) | |
| 3 | idd | ⊢ ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) → ( ( cf ‘ 𝑥 ) = 𝑥 → ( cf ‘ 𝑥 ) = 𝑥 ) ) | |
| 4 | pwfi | ⊢ ( 𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin ) | |
| 5 | isfinite | ⊢ ( 𝒫 𝑦 ∈ Fin ↔ 𝒫 𝑦 ≺ ω ) | |
| 6 | winainf | ⊢ ( 𝑥 ∈ Inaccw → ω ⊆ 𝑥 ) | |
| 7 | ssdomg | ⊢ ( 𝑥 ∈ Inaccw → ( ω ⊆ 𝑥 → ω ≼ 𝑥 ) ) | |
| 8 | 6 7 | mpd | ⊢ ( 𝑥 ∈ Inaccw → ω ≼ 𝑥 ) |
| 9 | sdomdomtr | ⊢ ( ( 𝒫 𝑦 ≺ ω ∧ ω ≼ 𝑥 ) → 𝒫 𝑦 ≺ 𝑥 ) | |
| 10 | 9 | expcom | ⊢ ( ω ≼ 𝑥 → ( 𝒫 𝑦 ≺ ω → 𝒫 𝑦 ≺ 𝑥 ) ) |
| 11 | 8 10 | syl | ⊢ ( 𝑥 ∈ Inaccw → ( 𝒫 𝑦 ≺ ω → 𝒫 𝑦 ≺ 𝑥 ) ) |
| 12 | 5 11 | biimtrid | ⊢ ( 𝑥 ∈ Inaccw → ( 𝒫 𝑦 ∈ Fin → 𝒫 𝑦 ≺ 𝑥 ) ) |
| 13 | 4 12 | biimtrid | ⊢ ( 𝑥 ∈ Inaccw → ( 𝑦 ∈ Fin → 𝒫 𝑦 ≺ 𝑥 ) ) |
| 14 | 13 | ad3antlr | ⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝑦 ∈ Fin → 𝒫 𝑦 ≺ 𝑥 ) ) |
| 15 | 14 | a1dd | ⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝑦 ∈ Fin → ( 𝑦 ≺ 𝑧 → 𝒫 𝑦 ≺ 𝑥 ) ) ) |
| 16 | vex | ⊢ 𝑦 ∈ V | |
| 17 | simplll | ⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin ) ) → GCH = V ) | |
| 18 | 16 17 | eleqtrrid | ⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin ) ) → 𝑦 ∈ GCH ) |
| 19 | simprr | ⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin ) ) → ¬ 𝑦 ∈ Fin ) | |
| 20 | gchinf | ⊢ ( ( 𝑦 ∈ GCH ∧ ¬ 𝑦 ∈ Fin ) → ω ≼ 𝑦 ) | |
| 21 | 18 19 20 | syl2anc | ⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin ) ) → ω ≼ 𝑦 ) |
| 22 | vex | ⊢ 𝑧 ∈ V | |
| 23 | 22 17 | eleqtrrid | ⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin ) ) → 𝑧 ∈ GCH ) |
| 24 | gchpwdom | ⊢ ( ( ω ≼ 𝑦 ∧ 𝑦 ∈ GCH ∧ 𝑧 ∈ GCH ) → ( 𝑦 ≺ 𝑧 ↔ 𝒫 𝑦 ≼ 𝑧 ) ) | |
| 25 | 21 18 23 24 | syl3anc | ⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin ) ) → ( 𝑦 ≺ 𝑧 ↔ 𝒫 𝑦 ≼ 𝑧 ) ) |
| 26 | winacard | ⊢ ( 𝑥 ∈ Inaccw → ( card ‘ 𝑥 ) = 𝑥 ) | |
| 27 | iscard | ⊢ ( ( card ‘ 𝑥 ) = 𝑥 ↔ ( 𝑥 ∈ On ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ≺ 𝑥 ) ) | |
| 28 | 27 | simprbi | ⊢ ( ( card ‘ 𝑥 ) = 𝑥 → ∀ 𝑧 ∈ 𝑥 𝑧 ≺ 𝑥 ) |
| 29 | 26 28 | syl | ⊢ ( 𝑥 ∈ Inaccw → ∀ 𝑧 ∈ 𝑥 𝑧 ≺ 𝑥 ) |
| 30 | 29 | ad2antlr | ⊢ ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) → ∀ 𝑧 ∈ 𝑥 𝑧 ≺ 𝑥 ) |
| 31 | 30 | r19.21bi | ⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ≺ 𝑥 ) |
| 32 | domsdomtr | ⊢ ( ( 𝒫 𝑦 ≼ 𝑧 ∧ 𝑧 ≺ 𝑥 ) → 𝒫 𝑦 ≺ 𝑥 ) | |
| 33 | 32 | expcom | ⊢ ( 𝑧 ≺ 𝑥 → ( 𝒫 𝑦 ≼ 𝑧 → 𝒫 𝑦 ≺ 𝑥 ) ) |
| 34 | 31 33 | syl | ⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝒫 𝑦 ≼ 𝑧 → 𝒫 𝑦 ≺ 𝑥 ) ) |
| 35 | 34 | adantrr | ⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin ) ) → ( 𝒫 𝑦 ≼ 𝑧 → 𝒫 𝑦 ≺ 𝑥 ) ) |
| 36 | 25 35 | sylbid | ⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin ) ) → ( 𝑦 ≺ 𝑧 → 𝒫 𝑦 ≺ 𝑥 ) ) |
| 37 | 36 | expr | ⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝑥 ) → ( ¬ 𝑦 ∈ Fin → ( 𝑦 ≺ 𝑧 → 𝒫 𝑦 ≺ 𝑥 ) ) ) |
| 38 | 15 37 | pm2.61d | ⊢ ( ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝑦 ≺ 𝑧 → 𝒫 𝑦 ≺ 𝑥 ) ) |
| 39 | 38 | rexlimdva | ⊢ ( ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) ∧ 𝑦 ∈ 𝑥 ) → ( ∃ 𝑧 ∈ 𝑥 𝑦 ≺ 𝑧 → 𝒫 𝑦 ≺ 𝑥 ) ) |
| 40 | 39 | ralimdva | ⊢ ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) → ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑥 𝑦 ≺ 𝑧 → ∀ 𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥 ) ) |
| 41 | 2 3 40 | 3anim123d | ⊢ ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) → ( ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑥 𝑦 ≺ 𝑧 ) → ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥 ) ) ) |
| 42 | elwina | ⊢ ( 𝑥 ∈ Inaccw ↔ ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑥 𝑦 ≺ 𝑧 ) ) | |
| 43 | elina | ⊢ ( 𝑥 ∈ Inacc ↔ ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥 ) ) | |
| 44 | 41 42 43 | 3imtr4g | ⊢ ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) → ( 𝑥 ∈ Inaccw → 𝑥 ∈ Inacc ) ) |
| 45 | 1 44 | mpd | ⊢ ( ( GCH = V ∧ 𝑥 ∈ Inaccw ) → 𝑥 ∈ Inacc ) |
| 46 | 45 | ex | ⊢ ( GCH = V → ( 𝑥 ∈ Inaccw → 𝑥 ∈ Inacc ) ) |
| 47 | inawina | ⊢ ( 𝑥 ∈ Inacc → 𝑥 ∈ Inaccw ) | |
| 48 | 46 47 | impbid1 | ⊢ ( GCH = V → ( 𝑥 ∈ Inaccw ↔ 𝑥 ∈ Inacc ) ) |
| 49 | 48 | eqrdv | ⊢ ( GCH = V → Inaccw = Inacc ) |