This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elwina | ⊢ ( 𝐴 ∈ Inaccw ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ Inaccw → 𝐴 ∈ V ) | |
| 2 | fvex | ⊢ ( cf ‘ 𝐴 ) ∈ V | |
| 3 | eleq1 | ⊢ ( ( cf ‘ 𝐴 ) = 𝐴 → ( ( cf ‘ 𝐴 ) ∈ V ↔ 𝐴 ∈ V ) ) | |
| 4 | 2 3 | mpbii | ⊢ ( ( cf ‘ 𝐴 ) = 𝐴 → 𝐴 ∈ V ) |
| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → 𝐴 ∈ V ) |
| 6 | neeq1 | ⊢ ( 𝑧 = 𝐴 → ( 𝑧 ≠ ∅ ↔ 𝐴 ≠ ∅ ) ) | |
| 7 | fveq2 | ⊢ ( 𝑧 = 𝐴 → ( cf ‘ 𝑧 ) = ( cf ‘ 𝐴 ) ) | |
| 8 | eqeq12 | ⊢ ( ( ( cf ‘ 𝑧 ) = ( cf ‘ 𝐴 ) ∧ 𝑧 = 𝐴 ) → ( ( cf ‘ 𝑧 ) = 𝑧 ↔ ( cf ‘ 𝐴 ) = 𝐴 ) ) | |
| 9 | 7 8 | mpancom | ⊢ ( 𝑧 = 𝐴 → ( ( cf ‘ 𝑧 ) = 𝑧 ↔ ( cf ‘ 𝐴 ) = 𝐴 ) ) |
| 10 | rexeq | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) | |
| 11 | 10 | raleqbi1dv | ⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
| 12 | 6 9 11 | 3anbi123d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑧 ≠ ∅ ∧ ( cf ‘ 𝑧 ) = 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ) ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) ) |
| 13 | df-wina | ⊢ Inaccw = { 𝑧 ∣ ( 𝑧 ≠ ∅ ∧ ( cf ‘ 𝑧 ) = 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ) } | |
| 14 | 12 13 | elab2g | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ Inaccw ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) ) |
| 15 | 1 5 14 | pm5.21nii | ⊢ ( 𝐴 ∈ Inaccw ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |