This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Assuming the GCH, weakly and strongly inaccessible cardinals coincide. Theorem 11.20 of TakeutiZaring p. 106. (Contributed by Mario Carneiro, 5-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchina | |- ( GCH = _V -> InaccW = Inacc ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( GCH = _V /\ x e. InaccW ) -> x e. InaccW ) |
|
| 2 | idd | |- ( ( GCH = _V /\ x e. InaccW ) -> ( x =/= (/) -> x =/= (/) ) ) |
|
| 3 | idd | |- ( ( GCH = _V /\ x e. InaccW ) -> ( ( cf ` x ) = x -> ( cf ` x ) = x ) ) |
|
| 4 | pwfi | |- ( y e. Fin <-> ~P y e. Fin ) |
|
| 5 | isfinite | |- ( ~P y e. Fin <-> ~P y ~< _om ) |
|
| 6 | winainf | |- ( x e. InaccW -> _om C_ x ) |
|
| 7 | ssdomg | |- ( x e. InaccW -> ( _om C_ x -> _om ~<_ x ) ) |
|
| 8 | 6 7 | mpd | |- ( x e. InaccW -> _om ~<_ x ) |
| 9 | sdomdomtr | |- ( ( ~P y ~< _om /\ _om ~<_ x ) -> ~P y ~< x ) |
|
| 10 | 9 | expcom | |- ( _om ~<_ x -> ( ~P y ~< _om -> ~P y ~< x ) ) |
| 11 | 8 10 | syl | |- ( x e. InaccW -> ( ~P y ~< _om -> ~P y ~< x ) ) |
| 12 | 5 11 | biimtrid | |- ( x e. InaccW -> ( ~P y e. Fin -> ~P y ~< x ) ) |
| 13 | 4 12 | biimtrid | |- ( x e. InaccW -> ( y e. Fin -> ~P y ~< x ) ) |
| 14 | 13 | ad3antlr | |- ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ z e. x ) -> ( y e. Fin -> ~P y ~< x ) ) |
| 15 | 14 | a1dd | |- ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ z e. x ) -> ( y e. Fin -> ( y ~< z -> ~P y ~< x ) ) ) |
| 16 | vex | |- y e. _V |
|
| 17 | simplll | |- ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ ( z e. x /\ -. y e. Fin ) ) -> GCH = _V ) |
|
| 18 | 16 17 | eleqtrrid | |- ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ ( z e. x /\ -. y e. Fin ) ) -> y e. GCH ) |
| 19 | simprr | |- ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ ( z e. x /\ -. y e. Fin ) ) -> -. y e. Fin ) |
|
| 20 | gchinf | |- ( ( y e. GCH /\ -. y e. Fin ) -> _om ~<_ y ) |
|
| 21 | 18 19 20 | syl2anc | |- ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ ( z e. x /\ -. y e. Fin ) ) -> _om ~<_ y ) |
| 22 | vex | |- z e. _V |
|
| 23 | 22 17 | eleqtrrid | |- ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ ( z e. x /\ -. y e. Fin ) ) -> z e. GCH ) |
| 24 | gchpwdom | |- ( ( _om ~<_ y /\ y e. GCH /\ z e. GCH ) -> ( y ~< z <-> ~P y ~<_ z ) ) |
|
| 25 | 21 18 23 24 | syl3anc | |- ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ ( z e. x /\ -. y e. Fin ) ) -> ( y ~< z <-> ~P y ~<_ z ) ) |
| 26 | winacard | |- ( x e. InaccW -> ( card ` x ) = x ) |
|
| 27 | iscard | |- ( ( card ` x ) = x <-> ( x e. On /\ A. z e. x z ~< x ) ) |
|
| 28 | 27 | simprbi | |- ( ( card ` x ) = x -> A. z e. x z ~< x ) |
| 29 | 26 28 | syl | |- ( x e. InaccW -> A. z e. x z ~< x ) |
| 30 | 29 | ad2antlr | |- ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) -> A. z e. x z ~< x ) |
| 31 | 30 | r19.21bi | |- ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ z e. x ) -> z ~< x ) |
| 32 | domsdomtr | |- ( ( ~P y ~<_ z /\ z ~< x ) -> ~P y ~< x ) |
|
| 33 | 32 | expcom | |- ( z ~< x -> ( ~P y ~<_ z -> ~P y ~< x ) ) |
| 34 | 31 33 | syl | |- ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ z e. x ) -> ( ~P y ~<_ z -> ~P y ~< x ) ) |
| 35 | 34 | adantrr | |- ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ ( z e. x /\ -. y e. Fin ) ) -> ( ~P y ~<_ z -> ~P y ~< x ) ) |
| 36 | 25 35 | sylbid | |- ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ ( z e. x /\ -. y e. Fin ) ) -> ( y ~< z -> ~P y ~< x ) ) |
| 37 | 36 | expr | |- ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ z e. x ) -> ( -. y e. Fin -> ( y ~< z -> ~P y ~< x ) ) ) |
| 38 | 15 37 | pm2.61d | |- ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ z e. x ) -> ( y ~< z -> ~P y ~< x ) ) |
| 39 | 38 | rexlimdva | |- ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) -> ( E. z e. x y ~< z -> ~P y ~< x ) ) |
| 40 | 39 | ralimdva | |- ( ( GCH = _V /\ x e. InaccW ) -> ( A. y e. x E. z e. x y ~< z -> A. y e. x ~P y ~< x ) ) |
| 41 | 2 3 40 | 3anim123d | |- ( ( GCH = _V /\ x e. InaccW ) -> ( ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x E. z e. x y ~< z ) -> ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x ~P y ~< x ) ) ) |
| 42 | elwina | |- ( x e. InaccW <-> ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x E. z e. x y ~< z ) ) |
|
| 43 | elina | |- ( x e. Inacc <-> ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x ~P y ~< x ) ) |
|
| 44 | 41 42 43 | 3imtr4g | |- ( ( GCH = _V /\ x e. InaccW ) -> ( x e. InaccW -> x e. Inacc ) ) |
| 45 | 1 44 | mpd | |- ( ( GCH = _V /\ x e. InaccW ) -> x e. Inacc ) |
| 46 | 45 | ex | |- ( GCH = _V -> ( x e. InaccW -> x e. Inacc ) ) |
| 47 | inawina | |- ( x e. Inacc -> x e. InaccW ) |
|
| 48 | 46 47 | impbid1 | |- ( GCH = _V -> ( x e. InaccW <-> x e. Inacc ) ) |
| 49 | 48 | eqrdv | |- ( GCH = _V -> InaccW = Inacc ) |