This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for finite ranges to have a strict dominance relation. (Contributed by Stefan O'Rear, 12-Sep-2014) (Revised by Mario Carneiro, 15-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzsdom2 | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → ( 𝐴 ... 𝐵 ) ≺ ( 𝐴 ... 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℤ ) | |
| 2 | 1 | ad2antrr | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐵 ∈ ℤ ) |
| 3 | 2 | zred | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐵 ∈ ℝ ) |
| 4 | eluzel2 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) | |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐴 ∈ ℤ ) |
| 6 | 5 | zred | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐴 ∈ ℝ ) |
| 7 | 3 6 | resubcld | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 8 | simplr | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐶 ∈ ℤ ) | |
| 9 | 8 | zred | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐶 ∈ ℝ ) |
| 10 | 9 6 | resubcld | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → ( 𝐶 − 𝐴 ) ∈ ℝ ) |
| 11 | 1red | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 1 ∈ ℝ ) | |
| 12 | simpr | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐵 < 𝐶 ) | |
| 13 | 3 9 6 12 | ltsub1dd | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → ( 𝐵 − 𝐴 ) < ( 𝐶 − 𝐴 ) ) |
| 14 | 7 10 11 13 | ltadd1dd | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → ( ( 𝐵 − 𝐴 ) + 1 ) < ( ( 𝐶 − 𝐴 ) + 1 ) ) |
| 15 | hashfz | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ... 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) + 1 ) ) | |
| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → ( ♯ ‘ ( 𝐴 ... 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) + 1 ) ) |
| 17 | 3 9 12 | ltled | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐵 ≤ 𝐶 ) |
| 18 | eluz2 | ⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ↔ ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶 ) ) | |
| 19 | 2 8 17 18 | syl3anbrc | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 20 | simpll | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
| 21 | uztrn | ⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
| 22 | 19 20 21 | syl2anc | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
| 23 | hashfz | ⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ... 𝐶 ) ) = ( ( 𝐶 − 𝐴 ) + 1 ) ) | |
| 24 | 22 23 | syl | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → ( ♯ ‘ ( 𝐴 ... 𝐶 ) ) = ( ( 𝐶 − 𝐴 ) + 1 ) ) |
| 25 | 14 16 24 | 3brtr4d | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → ( ♯ ‘ ( 𝐴 ... 𝐵 ) ) < ( ♯ ‘ ( 𝐴 ... 𝐶 ) ) ) |
| 26 | fzfi | ⊢ ( 𝐴 ... 𝐵 ) ∈ Fin | |
| 27 | fzfi | ⊢ ( 𝐴 ... 𝐶 ) ∈ Fin | |
| 28 | hashsdom | ⊢ ( ( ( 𝐴 ... 𝐵 ) ∈ Fin ∧ ( 𝐴 ... 𝐶 ) ∈ Fin ) → ( ( ♯ ‘ ( 𝐴 ... 𝐵 ) ) < ( ♯ ‘ ( 𝐴 ... 𝐶 ) ) ↔ ( 𝐴 ... 𝐵 ) ≺ ( 𝐴 ... 𝐶 ) ) ) | |
| 29 | 26 27 28 | mp2an | ⊢ ( ( ♯ ‘ ( 𝐴 ... 𝐵 ) ) < ( ♯ ‘ ( 𝐴 ... 𝐶 ) ) ↔ ( 𝐴 ... 𝐵 ) ≺ ( 𝐴 ... 𝐶 ) ) |
| 30 | 25 29 | sylib | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → ( 𝐴 ... 𝐵 ) ≺ ( 𝐴 ... 𝐶 ) ) |