This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashfzo | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzo0 | ⊢ ( 𝐴 ..^ 𝐴 ) = ∅ | |
| 2 | 1 | fveq2i | ⊢ ( ♯ ‘ ( 𝐴 ..^ 𝐴 ) ) = ( ♯ ‘ ∅ ) |
| 3 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 4 | 2 3 | eqtri | ⊢ ( ♯ ‘ ( 𝐴 ..^ 𝐴 ) ) = 0 |
| 5 | eluzel2 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) | |
| 6 | 5 | zcnd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ∈ ℂ ) |
| 7 | 6 | subidd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 − 𝐴 ) = 0 ) |
| 8 | 4 7 | eqtr4id | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ..^ 𝐴 ) ) = ( 𝐴 − 𝐴 ) ) |
| 9 | oveq2 | ⊢ ( 𝐵 = 𝐴 → ( 𝐴 ..^ 𝐵 ) = ( 𝐴 ..^ 𝐴 ) ) | |
| 10 | 9 | fveq2d | ⊢ ( 𝐵 = 𝐴 → ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ..^ 𝐴 ) ) ) |
| 11 | oveq1 | ⊢ ( 𝐵 = 𝐴 → ( 𝐵 − 𝐴 ) = ( 𝐴 − 𝐴 ) ) | |
| 12 | 10 11 | eqeq12d | ⊢ ( 𝐵 = 𝐴 → ( ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) ) = ( 𝐵 − 𝐴 ) ↔ ( ♯ ‘ ( 𝐴 ..^ 𝐴 ) ) = ( 𝐴 − 𝐴 ) ) ) |
| 13 | 8 12 | syl5ibrcom | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 = 𝐴 → ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) ) |
| 14 | eluzelz | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℤ ) | |
| 15 | fzoval | ⊢ ( 𝐵 ∈ ℤ → ( 𝐴 ..^ 𝐵 ) = ( 𝐴 ... ( 𝐵 − 1 ) ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ 𝐵 ) = ( 𝐴 ... ( 𝐵 − 1 ) ) ) |
| 17 | 16 | fveq2d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ... ( 𝐵 − 1 ) ) ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ... ( 𝐵 − 1 ) ) ) ) |
| 19 | hashfz | ⊢ ( ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ... ( 𝐵 − 1 ) ) ) = ( ( ( 𝐵 − 1 ) − 𝐴 ) + 1 ) ) | |
| 20 | 14 | zcnd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 21 | 1cnd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 1 ∈ ℂ ) | |
| 22 | 20 21 6 | sub32d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐵 − 1 ) − 𝐴 ) = ( ( 𝐵 − 𝐴 ) − 1 ) ) |
| 23 | 22 | oveq1d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( ( 𝐵 − 1 ) − 𝐴 ) + 1 ) = ( ( ( 𝐵 − 𝐴 ) − 1 ) + 1 ) ) |
| 24 | 20 6 | subcld | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 25 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 26 | npcan | ⊢ ( ( ( 𝐵 − 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝐵 − 𝐴 ) − 1 ) + 1 ) = ( 𝐵 − 𝐴 ) ) | |
| 27 | 24 25 26 | sylancl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( ( 𝐵 − 𝐴 ) − 1 ) + 1 ) = ( 𝐵 − 𝐴 ) ) |
| 28 | 23 27 | eqtrd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( ( 𝐵 − 1 ) − 𝐴 ) + 1 ) = ( 𝐵 − 𝐴 ) ) |
| 29 | 19 28 | sylan9eqr | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ♯ ‘ ( 𝐴 ... ( 𝐵 − 1 ) ) ) = ( 𝐵 − 𝐴 ) ) |
| 30 | 18 29 | eqtrd | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 31 | 30 | ex | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) ) |
| 32 | uzm1 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 = 𝐴 ∨ ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) ) | |
| 33 | 13 31 32 | mpjaod | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |