This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for finite ranges to have a strict dominance relation. (Contributed by Stefan O'Rear, 12-Sep-2014) (Revised by Mario Carneiro, 15-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzsdom2 | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> ( A ... B ) ~< ( A ... C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz | |- ( B e. ( ZZ>= ` A ) -> B e. ZZ ) |
|
| 2 | 1 | ad2antrr | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> B e. ZZ ) |
| 3 | 2 | zred | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> B e. RR ) |
| 4 | eluzel2 | |- ( B e. ( ZZ>= ` A ) -> A e. ZZ ) |
|
| 5 | 4 | ad2antrr | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> A e. ZZ ) |
| 6 | 5 | zred | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> A e. RR ) |
| 7 | 3 6 | resubcld | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> ( B - A ) e. RR ) |
| 8 | simplr | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> C e. ZZ ) |
|
| 9 | 8 | zred | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> C e. RR ) |
| 10 | 9 6 | resubcld | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> ( C - A ) e. RR ) |
| 11 | 1red | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> 1 e. RR ) |
|
| 12 | simpr | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> B < C ) |
|
| 13 | 3 9 6 12 | ltsub1dd | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> ( B - A ) < ( C - A ) ) |
| 14 | 7 10 11 13 | ltadd1dd | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> ( ( B - A ) + 1 ) < ( ( C - A ) + 1 ) ) |
| 15 | hashfz | |- ( B e. ( ZZ>= ` A ) -> ( # ` ( A ... B ) ) = ( ( B - A ) + 1 ) ) |
|
| 16 | 15 | ad2antrr | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> ( # ` ( A ... B ) ) = ( ( B - A ) + 1 ) ) |
| 17 | 3 9 12 | ltled | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> B <_ C ) |
| 18 | eluz2 | |- ( C e. ( ZZ>= ` B ) <-> ( B e. ZZ /\ C e. ZZ /\ B <_ C ) ) |
|
| 19 | 2 8 17 18 | syl3anbrc | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> C e. ( ZZ>= ` B ) ) |
| 20 | simpll | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> B e. ( ZZ>= ` A ) ) |
|
| 21 | uztrn | |- ( ( C e. ( ZZ>= ` B ) /\ B e. ( ZZ>= ` A ) ) -> C e. ( ZZ>= ` A ) ) |
|
| 22 | 19 20 21 | syl2anc | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> C e. ( ZZ>= ` A ) ) |
| 23 | hashfz | |- ( C e. ( ZZ>= ` A ) -> ( # ` ( A ... C ) ) = ( ( C - A ) + 1 ) ) |
|
| 24 | 22 23 | syl | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> ( # ` ( A ... C ) ) = ( ( C - A ) + 1 ) ) |
| 25 | 14 16 24 | 3brtr4d | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> ( # ` ( A ... B ) ) < ( # ` ( A ... C ) ) ) |
| 26 | fzfi | |- ( A ... B ) e. Fin |
|
| 27 | fzfi | |- ( A ... C ) e. Fin |
|
| 28 | hashsdom | |- ( ( ( A ... B ) e. Fin /\ ( A ... C ) e. Fin ) -> ( ( # ` ( A ... B ) ) < ( # ` ( A ... C ) ) <-> ( A ... B ) ~< ( A ... C ) ) ) |
|
| 29 | 26 27 28 | mp2an | |- ( ( # ` ( A ... B ) ) < ( # ` ( A ... C ) ) <-> ( A ... B ) ~< ( A ... C ) ) |
| 30 | 25 29 | sylib | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ZZ ) /\ B < C ) -> ( A ... B ) ~< ( A ... C ) ) |