This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fo00 | ⊢ ( 𝐹 : ∅ –onto→ 𝐴 ↔ ( 𝐹 = ∅ ∧ 𝐴 = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofn | ⊢ ( 𝐹 : ∅ –onto→ 𝐴 → 𝐹 Fn ∅ ) | |
| 2 | fn0 | ⊢ ( 𝐹 Fn ∅ ↔ 𝐹 = ∅ ) | |
| 3 | f10 | ⊢ ∅ : ∅ –1-1→ 𝐴 | |
| 4 | f1eq1 | ⊢ ( 𝐹 = ∅ → ( 𝐹 : ∅ –1-1→ 𝐴 ↔ ∅ : ∅ –1-1→ 𝐴 ) ) | |
| 5 | 3 4 | mpbiri | ⊢ ( 𝐹 = ∅ → 𝐹 : ∅ –1-1→ 𝐴 ) |
| 6 | 2 5 | sylbi | ⊢ ( 𝐹 Fn ∅ → 𝐹 : ∅ –1-1→ 𝐴 ) |
| 7 | 1 6 | syl | ⊢ ( 𝐹 : ∅ –onto→ 𝐴 → 𝐹 : ∅ –1-1→ 𝐴 ) |
| 8 | 7 | ancri | ⊢ ( 𝐹 : ∅ –onto→ 𝐴 → ( 𝐹 : ∅ –1-1→ 𝐴 ∧ 𝐹 : ∅ –onto→ 𝐴 ) ) |
| 9 | df-f1o | ⊢ ( 𝐹 : ∅ –1-1-onto→ 𝐴 ↔ ( 𝐹 : ∅ –1-1→ 𝐴 ∧ 𝐹 : ∅ –onto→ 𝐴 ) ) | |
| 10 | 8 9 | sylibr | ⊢ ( 𝐹 : ∅ –onto→ 𝐴 → 𝐹 : ∅ –1-1-onto→ 𝐴 ) |
| 11 | f1ofo | ⊢ ( 𝐹 : ∅ –1-1-onto→ 𝐴 → 𝐹 : ∅ –onto→ 𝐴 ) | |
| 12 | 10 11 | impbii | ⊢ ( 𝐹 : ∅ –onto→ 𝐴 ↔ 𝐹 : ∅ –1-1-onto→ 𝐴 ) |
| 13 | f1o00 | ⊢ ( 𝐹 : ∅ –1-1-onto→ 𝐴 ↔ ( 𝐹 = ∅ ∧ 𝐴 = ∅ ) ) | |
| 14 | 12 13 | bitri | ⊢ ( 𝐹 : ∅ –onto→ 𝐴 ↔ ( 𝐹 = ∅ ∧ 𝐴 = ∅ ) ) |