This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a thin category, a hom-set being non-empty is equivalent to having a unique element. (Contributed by Zhi Wang, 21-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincmo.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| thincmo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| thincmo.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| thincn0eu.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | ||
| thincn0eu.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | ||
| Assertion | thincn0eu | ⊢ ( 𝜑 → ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ↔ ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincmo.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| 2 | thincmo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 3 | thincmo.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 4 | thincn0eu.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| 5 | thincn0eu.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | |
| 6 | n0 | ⊢ ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 7 | 6 | biimpi | ⊢ ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ → ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 8 | 1 2 3 4 5 | thincmod | ⊢ ( 𝜑 → ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 9 | 7 8 | anim12i | ⊢ ( ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ∧ 𝜑 ) → ( ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| 10 | df-eu | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↔ ( ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ∧ 𝜑 ) → ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 12 | 11 | expcom | ⊢ ( 𝜑 → ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ → ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| 13 | euex | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 14 | 13 6 | sylibr | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) |
| 15 | 12 14 | impbid1 | ⊢ ( 𝜑 → ( ( 𝑋 𝐻 𝑌 ) ≠ ∅ ↔ ∃! 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |