This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with non-empty domain is non-empty and has non-empty codomain. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fdomne0 | ⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑋 ≠ ∅ ) → ( 𝐹 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0dom0 | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝑋 = ∅ ↔ 𝐹 = ∅ ) ) | |
| 2 | 1 | necon3bid | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝑋 ≠ ∅ ↔ 𝐹 ≠ ∅ ) ) |
| 3 | 2 | biimpa | ⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑋 ≠ ∅ ) → 𝐹 ≠ ∅ ) |
| 4 | feq3 | ⊢ ( 𝑌 = ∅ → ( 𝐹 : 𝑋 ⟶ 𝑌 ↔ 𝐹 : 𝑋 ⟶ ∅ ) ) | |
| 5 | f00 | ⊢ ( 𝐹 : 𝑋 ⟶ ∅ ↔ ( 𝐹 = ∅ ∧ 𝑋 = ∅ ) ) | |
| 6 | 5 | simprbi | ⊢ ( 𝐹 : 𝑋 ⟶ ∅ → 𝑋 = ∅ ) |
| 7 | 4 6 | biimtrdi | ⊢ ( 𝑌 = ∅ → ( 𝐹 : 𝑋 ⟶ 𝑌 → 𝑋 = ∅ ) ) |
| 8 | nne | ⊢ ( ¬ 𝑋 ≠ ∅ ↔ 𝑋 = ∅ ) | |
| 9 | 7 8 | imbitrrdi | ⊢ ( 𝑌 = ∅ → ( 𝐹 : 𝑋 ⟶ 𝑌 → ¬ 𝑋 ≠ ∅ ) ) |
| 10 | imnan | ⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌 → ¬ 𝑋 ≠ ∅ ) ↔ ¬ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑋 ≠ ∅ ) ) | |
| 11 | 9 10 | sylib | ⊢ ( 𝑌 = ∅ → ¬ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑋 ≠ ∅ ) ) |
| 12 | 11 | necon2ai | ⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑋 ≠ ∅ ) → 𝑌 ≠ ∅ ) |
| 13 | 3 12 | jca | ⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑋 ≠ ∅ ) → ( 𝐹 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) |