This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A fully faithful functor from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 19-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucoppc.o | ||
| fucoppc.p | |||
| fucoppc.q | |||
| fucoppc.r | |||
| fucoppc.s | |||
| fucoppc.n | |||
| fucoppc.f | No typesetting found for |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) with typecode |- | ||
| fucoppc.g | |||
| fucoppcffth.c | |||
| fucoppcffth.d | |||
| Assertion | fucoppcffth |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppc.o | ||
| 2 | fucoppc.p | ||
| 3 | fucoppc.q | ||
| 4 | fucoppc.r | ||
| 5 | fucoppc.s | ||
| 6 | fucoppc.n | ||
| 7 | fucoppc.f | Could not format ( ph -> F = ( oppFunc |` ( C Func D ) ) ) : No typesetting found for |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) with typecode |- | |
| 8 | fucoppc.g | ||
| 9 | fucoppcffth.c | ||
| 10 | fucoppcffth.d | ||
| 11 | eqid | ||
| 12 | eqid | ||
| 13 | eqid | ||
| 14 | eqid | ||
| 15 | eqid | ||
| 16 | 3 9 10 | fuccat | |
| 17 | 4 | oppccat | |
| 18 | 16 17 | syl | |
| 19 | prid1g | ||
| 20 | 18 19 | syl | |
| 21 | 20 18 | elind | |
| 22 | prex | ||
| 23 | 22 | a1i | |
| 24 | 11 15 23 | catcbas | |
| 25 | 21 24 | eleqtrrd | |
| 26 | 1 | oppccat | |
| 27 | 9 26 | syl | |
| 28 | 2 | oppccat | |
| 29 | 10 28 | syl | |
| 30 | 5 27 29 | fuccat | |
| 31 | prid2g | ||
| 32 | 30 31 | syl | |
| 33 | 32 30 | elind | |
| 34 | 33 24 | eleqtrrd | |
| 35 | 1 2 3 4 5 6 7 8 11 15 14 9 10 25 34 | fucoppc | |
| 36 | df-br | ||
| 37 | 35 36 | sylib | |
| 38 | 11 12 13 14 37 | catcisoi | |
| 39 | 38 | simpld | |
| 40 | df-br | ||
| 41 | 39 40 | sylibr |