This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is faithful. (Contributed by AV, 31-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | ||
| funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | ||
| funcsetcestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) | ||
| funcsetcestrc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | ||
| Assertion | fthsetcestrc | ⊢ ( 𝜑 → 𝐹 ( 𝑆 Faith 𝐸 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 2 | funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | |
| 4 | funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 5 | funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | |
| 6 | funcsetcestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) | |
| 7 | funcsetcestrc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| 8 | 1 2 3 4 5 6 7 | funcsetcestrc | ⊢ ( 𝜑 → 𝐹 ( 𝑆 Func 𝐸 ) 𝐺 ) |
| 9 | 1 2 3 4 5 6 7 | funcsetcestrclem8 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ⟶ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 10 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑈 ∈ WUni ) |
| 11 | eqid | ⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) | |
| 12 | 1 4 | setcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑆 ) ) |
| 13 | 2 12 | eqtr4id | ⊢ ( 𝜑 → 𝐶 = 𝑈 ) |
| 14 | 13 | eleq2d | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐶 ↔ 𝑎 ∈ 𝑈 ) ) |
| 15 | 14 | biimpcd | ⊢ ( 𝑎 ∈ 𝐶 → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
| 17 | 16 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑎 ∈ 𝑈 ) |
| 18 | 13 | eleq2d | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐶 ↔ 𝑏 ∈ 𝑈 ) ) |
| 19 | 18 | biimpcd | ⊢ ( 𝑏 ∈ 𝐶 → ( 𝜑 → 𝑏 ∈ 𝑈 ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) → ( 𝜑 → 𝑏 ∈ 𝑈 ) ) |
| 21 | 20 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑏 ∈ 𝑈 ) |
| 22 | 1 10 11 17 21 | setchom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) = ( 𝑏 ↑m 𝑎 ) ) |
| 23 | 22 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ↔ ℎ ∈ ( 𝑏 ↑m 𝑎 ) ) ) |
| 24 | 1 2 3 4 5 6 | funcsetcestrclem6 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ∧ ℎ ∈ ( 𝑏 ↑m 𝑎 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) |
| 25 | 24 | 3expia | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ ∈ ( 𝑏 ↑m 𝑎 ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) ) |
| 26 | 23 25 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) ) |
| 27 | 26 | com12 | ⊢ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) ) |
| 28 | 27 | adantr | ⊢ ( ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) ) |
| 29 | 28 | impcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) |
| 30 | 22 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ↔ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ) ) |
| 31 | 1 2 3 4 5 6 | funcsetcestrclem6 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) |
| 32 | 31 | 3expia | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) ) |
| 33 | 30 32 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) ) |
| 34 | 33 | com12 | ⊢ ( 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) ) |
| 35 | 34 | adantl | ⊢ ( ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) ) |
| 36 | 35 | impcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) |
| 37 | 29 36 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ) ) → ( ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ℎ = 𝑘 ) ) |
| 38 | 37 | biimpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ) ) → ( ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) → ℎ = 𝑘 ) ) |
| 39 | 38 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ∀ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ∀ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ( ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) → ℎ = 𝑘 ) ) |
| 40 | dff13 | ⊢ ( ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) –1-1→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ↔ ( ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ⟶ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ∀ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ( ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) → ℎ = 𝑘 ) ) ) | |
| 41 | 9 39 40 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) –1-1→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 42 | 41 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐶 ∀ 𝑏 ∈ 𝐶 ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) –1-1→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 43 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 44 | 2 11 43 | isfth2 | ⊢ ( 𝐹 ( 𝑆 Faith 𝐸 ) 𝐺 ↔ ( 𝐹 ( 𝑆 Func 𝐸 ) 𝐺 ∧ ∀ 𝑎 ∈ 𝐶 ∀ 𝑏 ∈ 𝐶 ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) –1-1→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 45 | 8 42 44 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ( 𝑆 Faith 𝐸 ) 𝐺 ) |