This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is faithful. (Contributed by AV, 31-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | |- S = ( SetCat ` U ) |
|
| funcsetcestrc.c | |- C = ( Base ` S ) |
||
| funcsetcestrc.f | |- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) |
||
| funcsetcestrc.u | |- ( ph -> U e. WUni ) |
||
| funcsetcestrc.o | |- ( ph -> _om e. U ) |
||
| funcsetcestrc.g | |- ( ph -> G = ( x e. C , y e. C |-> ( _I |` ( y ^m x ) ) ) ) |
||
| funcsetcestrc.e | |- E = ( ExtStrCat ` U ) |
||
| Assertion | fthsetcestrc | |- ( ph -> F ( S Faith E ) G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | |- S = ( SetCat ` U ) |
|
| 2 | funcsetcestrc.c | |- C = ( Base ` S ) |
|
| 3 | funcsetcestrc.f | |- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) |
|
| 4 | funcsetcestrc.u | |- ( ph -> U e. WUni ) |
|
| 5 | funcsetcestrc.o | |- ( ph -> _om e. U ) |
|
| 6 | funcsetcestrc.g | |- ( ph -> G = ( x e. C , y e. C |-> ( _I |` ( y ^m x ) ) ) ) |
|
| 7 | funcsetcestrc.e | |- E = ( ExtStrCat ` U ) |
|
| 8 | 1 2 3 4 5 6 7 | funcsetcestrc | |- ( ph -> F ( S Func E ) G ) |
| 9 | 1 2 3 4 5 6 7 | funcsetcestrclem8 | |- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( a G b ) : ( a ( Hom ` S ) b ) --> ( ( F ` a ) ( Hom ` E ) ( F ` b ) ) ) |
| 10 | 4 | adantr | |- ( ( ph /\ ( a e. C /\ b e. C ) ) -> U e. WUni ) |
| 11 | eqid | |- ( Hom ` S ) = ( Hom ` S ) |
|
| 12 | 1 4 | setcbas | |- ( ph -> U = ( Base ` S ) ) |
| 13 | 2 12 | eqtr4id | |- ( ph -> C = U ) |
| 14 | 13 | eleq2d | |- ( ph -> ( a e. C <-> a e. U ) ) |
| 15 | 14 | biimpcd | |- ( a e. C -> ( ph -> a e. U ) ) |
| 16 | 15 | adantr | |- ( ( a e. C /\ b e. C ) -> ( ph -> a e. U ) ) |
| 17 | 16 | impcom | |- ( ( ph /\ ( a e. C /\ b e. C ) ) -> a e. U ) |
| 18 | 13 | eleq2d | |- ( ph -> ( b e. C <-> b e. U ) ) |
| 19 | 18 | biimpcd | |- ( b e. C -> ( ph -> b e. U ) ) |
| 20 | 19 | adantl | |- ( ( a e. C /\ b e. C ) -> ( ph -> b e. U ) ) |
| 21 | 20 | impcom | |- ( ( ph /\ ( a e. C /\ b e. C ) ) -> b e. U ) |
| 22 | 1 10 11 17 21 | setchom | |- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( a ( Hom ` S ) b ) = ( b ^m a ) ) |
| 23 | 22 | eleq2d | |- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( h e. ( a ( Hom ` S ) b ) <-> h e. ( b ^m a ) ) ) |
| 24 | 1 2 3 4 5 6 | funcsetcestrclem6 | |- ( ( ph /\ ( a e. C /\ b e. C ) /\ h e. ( b ^m a ) ) -> ( ( a G b ) ` h ) = h ) |
| 25 | 24 | 3expia | |- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( h e. ( b ^m a ) -> ( ( a G b ) ` h ) = h ) ) |
| 26 | 23 25 | sylbid | |- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( h e. ( a ( Hom ` S ) b ) -> ( ( a G b ) ` h ) = h ) ) |
| 27 | 26 | com12 | |- ( h e. ( a ( Hom ` S ) b ) -> ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( ( a G b ) ` h ) = h ) ) |
| 28 | 27 | adantr | |- ( ( h e. ( a ( Hom ` S ) b ) /\ k e. ( a ( Hom ` S ) b ) ) -> ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( ( a G b ) ` h ) = h ) ) |
| 29 | 28 | impcom | |- ( ( ( ph /\ ( a e. C /\ b e. C ) ) /\ ( h e. ( a ( Hom ` S ) b ) /\ k e. ( a ( Hom ` S ) b ) ) ) -> ( ( a G b ) ` h ) = h ) |
| 30 | 22 | eleq2d | |- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( k e. ( a ( Hom ` S ) b ) <-> k e. ( b ^m a ) ) ) |
| 31 | 1 2 3 4 5 6 | funcsetcestrclem6 | |- ( ( ph /\ ( a e. C /\ b e. C ) /\ k e. ( b ^m a ) ) -> ( ( a G b ) ` k ) = k ) |
| 32 | 31 | 3expia | |- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( k e. ( b ^m a ) -> ( ( a G b ) ` k ) = k ) ) |
| 33 | 30 32 | sylbid | |- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( k e. ( a ( Hom ` S ) b ) -> ( ( a G b ) ` k ) = k ) ) |
| 34 | 33 | com12 | |- ( k e. ( a ( Hom ` S ) b ) -> ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( ( a G b ) ` k ) = k ) ) |
| 35 | 34 | adantl | |- ( ( h e. ( a ( Hom ` S ) b ) /\ k e. ( a ( Hom ` S ) b ) ) -> ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( ( a G b ) ` k ) = k ) ) |
| 36 | 35 | impcom | |- ( ( ( ph /\ ( a e. C /\ b e. C ) ) /\ ( h e. ( a ( Hom ` S ) b ) /\ k e. ( a ( Hom ` S ) b ) ) ) -> ( ( a G b ) ` k ) = k ) |
| 37 | 29 36 | eqeq12d | |- ( ( ( ph /\ ( a e. C /\ b e. C ) ) /\ ( h e. ( a ( Hom ` S ) b ) /\ k e. ( a ( Hom ` S ) b ) ) ) -> ( ( ( a G b ) ` h ) = ( ( a G b ) ` k ) <-> h = k ) ) |
| 38 | 37 | biimpd | |- ( ( ( ph /\ ( a e. C /\ b e. C ) ) /\ ( h e. ( a ( Hom ` S ) b ) /\ k e. ( a ( Hom ` S ) b ) ) ) -> ( ( ( a G b ) ` h ) = ( ( a G b ) ` k ) -> h = k ) ) |
| 39 | 38 | ralrimivva | |- ( ( ph /\ ( a e. C /\ b e. C ) ) -> A. h e. ( a ( Hom ` S ) b ) A. k e. ( a ( Hom ` S ) b ) ( ( ( a G b ) ` h ) = ( ( a G b ) ` k ) -> h = k ) ) |
| 40 | dff13 | |- ( ( a G b ) : ( a ( Hom ` S ) b ) -1-1-> ( ( F ` a ) ( Hom ` E ) ( F ` b ) ) <-> ( ( a G b ) : ( a ( Hom ` S ) b ) --> ( ( F ` a ) ( Hom ` E ) ( F ` b ) ) /\ A. h e. ( a ( Hom ` S ) b ) A. k e. ( a ( Hom ` S ) b ) ( ( ( a G b ) ` h ) = ( ( a G b ) ` k ) -> h = k ) ) ) |
|
| 41 | 9 39 40 | sylanbrc | |- ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( a G b ) : ( a ( Hom ` S ) b ) -1-1-> ( ( F ` a ) ( Hom ` E ) ( F ` b ) ) ) |
| 42 | 41 | ralrimivva | |- ( ph -> A. a e. C A. b e. C ( a G b ) : ( a ( Hom ` S ) b ) -1-1-> ( ( F ` a ) ( Hom ` E ) ( F ` b ) ) ) |
| 43 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 44 | 2 11 43 | isfth2 | |- ( F ( S Faith E ) G <-> ( F ( S Func E ) G /\ A. a e. C A. b e. C ( a G b ) : ( a ( Hom ` S ) b ) -1-1-> ( ( F ` a ) ( Hom ` E ) ( F ` b ) ) ) ) |
| 45 | 8 42 44 | sylanbrc | |- ( ph -> F ( S Faith E ) G ) |