This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent condition for a faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfth.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| isfth.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| isfth.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| Assertion | isfth2 | ⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfth.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | isfth.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | isfth.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 4 | 1 | isfth | ⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
| 5 | simpll | ⊢ ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 6 | simplr | ⊢ ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 7 | simpr | ⊢ ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 8 | 1 2 3 5 6 7 | funcf2 | ⊢ ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 9 | df-f1 | ⊢ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∧ Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) | |
| 10 | 9 | baib | ⊢ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
| 11 | 8 10 | syl | ⊢ ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
| 12 | 11 | ralbidva | ⊢ ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
| 13 | 12 | ralbidva | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
| 14 | 13 | pm5.32i | ⊢ ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
| 15 | 4 14 | bitr4i | ⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |