This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is faithful. (Contributed by AV, 2-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | ||
| funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | ||
| funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | ||
| funcestrcsetc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) | ||
| Assertion | fthestrcsetc | ⊢ ( 𝜑 → 𝐹 ( 𝐸 Faith 𝑆 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 3 | funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | |
| 4 | funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 5 | funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 6 | funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | |
| 7 | funcestrcsetc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) | |
| 8 | 1 2 3 4 5 6 7 | funcestrcsetc | ⊢ ( 𝜑 → 𝐹 ( 𝐸 Func 𝑆 ) 𝐺 ) |
| 9 | 1 2 3 4 5 6 7 | funcestrcsetclem8 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ⟶ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 10 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑈 ∈ WUni ) |
| 11 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 12 | 1 5 | estrcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐸 ) ) |
| 13 | 3 12 | eqtr4id | ⊢ ( 𝜑 → 𝐵 = 𝑈 ) |
| 14 | 13 | eleq2d | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 ↔ 𝑎 ∈ 𝑈 ) ) |
| 15 | 14 | biimpcd | ⊢ ( 𝑎 ∈ 𝐵 → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
| 17 | 16 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝑈 ) |
| 18 | 13 | eleq2d | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 ↔ 𝑏 ∈ 𝑈 ) ) |
| 19 | 18 | biimpcd | ⊢ ( 𝑏 ∈ 𝐵 → ( 𝜑 → 𝑏 ∈ 𝑈 ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝜑 → 𝑏 ∈ 𝑈 ) ) |
| 21 | 20 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝑈 ) |
| 22 | eqid | ⊢ ( Base ‘ 𝑎 ) = ( Base ‘ 𝑎 ) | |
| 23 | eqid | ⊢ ( Base ‘ 𝑏 ) = ( Base ‘ 𝑏 ) | |
| 24 | 1 10 11 17 21 22 23 | estrchom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) = ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
| 25 | 24 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ↔ ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
| 26 | 1 2 3 4 5 6 7 22 23 | funcestrcsetclem6 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) |
| 27 | 26 | 3expia | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ℎ ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) ) |
| 28 | 25 27 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) ) |
| 29 | 28 | com12 | ⊢ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) ) |
| 30 | 29 | adantr | ⊢ ( ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) ) |
| 31 | 30 | impcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ℎ ) |
| 32 | 24 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ↔ 𝑘 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
| 33 | 1 2 3 4 5 6 7 22 23 | funcestrcsetclem6 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑘 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) |
| 34 | 33 | 3expia | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑘 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) ) |
| 35 | 32 34 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) ) |
| 36 | 35 | com12 | ⊢ ( 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) ) |
| 37 | 36 | adantl | ⊢ ( ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) ) |
| 38 | 37 | impcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) |
| 39 | 31 38 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ) ) → ( ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ℎ = 𝑘 ) ) |
| 40 | 39 | biimpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ) ) → ( ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) → ℎ = 𝑘 ) ) |
| 41 | 40 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ∀ ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ∀ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ( ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) → ℎ = 𝑘 ) ) |
| 42 | dff13 | ⊢ ( ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) –1-1→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ↔ ( ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ⟶ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ ℎ ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ∀ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) ( ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) → ℎ = 𝑘 ) ) ) | |
| 43 | 9 41 42 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) –1-1→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 44 | 43 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) –1-1→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 45 | eqid | ⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) | |
| 46 | 3 11 45 | isfth2 | ⊢ ( 𝐹 ( 𝐸 Faith 𝑆 ) 𝐺 ↔ ( 𝐹 ( 𝐸 Func 𝑆 ) 𝐺 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝐸 ) 𝑏 ) –1-1→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 47 | 8 44 46 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ( 𝐸 Faith 𝑆 ) 𝐺 ) |