This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is faithful. (Contributed by AV, 2-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcestrcsetc.e | |- E = ( ExtStrCat ` U ) |
|
| funcestrcsetc.s | |- S = ( SetCat ` U ) |
||
| funcestrcsetc.b | |- B = ( Base ` E ) |
||
| funcestrcsetc.c | |- C = ( Base ` S ) |
||
| funcestrcsetc.u | |- ( ph -> U e. WUni ) |
||
| funcestrcsetc.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
||
| funcestrcsetc.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
||
| Assertion | fthestrcsetc | |- ( ph -> F ( E Faith S ) G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | |- E = ( ExtStrCat ` U ) |
|
| 2 | funcestrcsetc.s | |- S = ( SetCat ` U ) |
|
| 3 | funcestrcsetc.b | |- B = ( Base ` E ) |
|
| 4 | funcestrcsetc.c | |- C = ( Base ` S ) |
|
| 5 | funcestrcsetc.u | |- ( ph -> U e. WUni ) |
|
| 6 | funcestrcsetc.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
|
| 7 | funcestrcsetc.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
|
| 8 | 1 2 3 4 5 6 7 | funcestrcsetc | |- ( ph -> F ( E Func S ) G ) |
| 9 | 1 2 3 4 5 6 7 | funcestrcsetclem8 | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a G b ) : ( a ( Hom ` E ) b ) --> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) ) |
| 10 | 5 | adantr | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> U e. WUni ) |
| 11 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 12 | 1 5 | estrcbas | |- ( ph -> U = ( Base ` E ) ) |
| 13 | 3 12 | eqtr4id | |- ( ph -> B = U ) |
| 14 | 13 | eleq2d | |- ( ph -> ( a e. B <-> a e. U ) ) |
| 15 | 14 | biimpcd | |- ( a e. B -> ( ph -> a e. U ) ) |
| 16 | 15 | adantr | |- ( ( a e. B /\ b e. B ) -> ( ph -> a e. U ) ) |
| 17 | 16 | impcom | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> a e. U ) |
| 18 | 13 | eleq2d | |- ( ph -> ( b e. B <-> b e. U ) ) |
| 19 | 18 | biimpcd | |- ( b e. B -> ( ph -> b e. U ) ) |
| 20 | 19 | adantl | |- ( ( a e. B /\ b e. B ) -> ( ph -> b e. U ) ) |
| 21 | 20 | impcom | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> b e. U ) |
| 22 | eqid | |- ( Base ` a ) = ( Base ` a ) |
|
| 23 | eqid | |- ( Base ` b ) = ( Base ` b ) |
|
| 24 | 1 10 11 17 21 22 23 | estrchom | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a ( Hom ` E ) b ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) |
| 25 | 24 | eleq2d | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( h e. ( a ( Hom ` E ) b ) <-> h e. ( ( Base ` b ) ^m ( Base ` a ) ) ) ) |
| 26 | 1 2 3 4 5 6 7 22 23 | funcestrcsetclem6 | |- ( ( ph /\ ( a e. B /\ b e. B ) /\ h e. ( ( Base ` b ) ^m ( Base ` a ) ) ) -> ( ( a G b ) ` h ) = h ) |
| 27 | 26 | 3expia | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( h e. ( ( Base ` b ) ^m ( Base ` a ) ) -> ( ( a G b ) ` h ) = h ) ) |
| 28 | 25 27 | sylbid | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( h e. ( a ( Hom ` E ) b ) -> ( ( a G b ) ` h ) = h ) ) |
| 29 | 28 | com12 | |- ( h e. ( a ( Hom ` E ) b ) -> ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a G b ) ` h ) = h ) ) |
| 30 | 29 | adantr | |- ( ( h e. ( a ( Hom ` E ) b ) /\ k e. ( a ( Hom ` E ) b ) ) -> ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a G b ) ` h ) = h ) ) |
| 31 | 30 | impcom | |- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ ( h e. ( a ( Hom ` E ) b ) /\ k e. ( a ( Hom ` E ) b ) ) ) -> ( ( a G b ) ` h ) = h ) |
| 32 | 24 | eleq2d | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( k e. ( a ( Hom ` E ) b ) <-> k e. ( ( Base ` b ) ^m ( Base ` a ) ) ) ) |
| 33 | 1 2 3 4 5 6 7 22 23 | funcestrcsetclem6 | |- ( ( ph /\ ( a e. B /\ b e. B ) /\ k e. ( ( Base ` b ) ^m ( Base ` a ) ) ) -> ( ( a G b ) ` k ) = k ) |
| 34 | 33 | 3expia | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( k e. ( ( Base ` b ) ^m ( Base ` a ) ) -> ( ( a G b ) ` k ) = k ) ) |
| 35 | 32 34 | sylbid | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( k e. ( a ( Hom ` E ) b ) -> ( ( a G b ) ` k ) = k ) ) |
| 36 | 35 | com12 | |- ( k e. ( a ( Hom ` E ) b ) -> ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a G b ) ` k ) = k ) ) |
| 37 | 36 | adantl | |- ( ( h e. ( a ( Hom ` E ) b ) /\ k e. ( a ( Hom ` E ) b ) ) -> ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a G b ) ` k ) = k ) ) |
| 38 | 37 | impcom | |- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ ( h e. ( a ( Hom ` E ) b ) /\ k e. ( a ( Hom ` E ) b ) ) ) -> ( ( a G b ) ` k ) = k ) |
| 39 | 31 38 | eqeq12d | |- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ ( h e. ( a ( Hom ` E ) b ) /\ k e. ( a ( Hom ` E ) b ) ) ) -> ( ( ( a G b ) ` h ) = ( ( a G b ) ` k ) <-> h = k ) ) |
| 40 | 39 | biimpd | |- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ ( h e. ( a ( Hom ` E ) b ) /\ k e. ( a ( Hom ` E ) b ) ) ) -> ( ( ( a G b ) ` h ) = ( ( a G b ) ` k ) -> h = k ) ) |
| 41 | 40 | ralrimivva | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> A. h e. ( a ( Hom ` E ) b ) A. k e. ( a ( Hom ` E ) b ) ( ( ( a G b ) ` h ) = ( ( a G b ) ` k ) -> h = k ) ) |
| 42 | dff13 | |- ( ( a G b ) : ( a ( Hom ` E ) b ) -1-1-> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) <-> ( ( a G b ) : ( a ( Hom ` E ) b ) --> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) /\ A. h e. ( a ( Hom ` E ) b ) A. k e. ( a ( Hom ` E ) b ) ( ( ( a G b ) ` h ) = ( ( a G b ) ` k ) -> h = k ) ) ) |
|
| 43 | 9 41 42 | sylanbrc | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a G b ) : ( a ( Hom ` E ) b ) -1-1-> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) ) |
| 44 | 43 | ralrimivva | |- ( ph -> A. a e. B A. b e. B ( a G b ) : ( a ( Hom ` E ) b ) -1-1-> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) ) |
| 45 | eqid | |- ( Hom ` S ) = ( Hom ` S ) |
|
| 46 | 3 11 45 | isfth2 | |- ( F ( E Faith S ) G <-> ( F ( E Func S ) G /\ A. a e. B A. b e. B ( a G b ) : ( a ( Hom ` E ) b ) -1-1-> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) ) ) |
| 47 | 8 44 46 | sylanbrc | |- ( ph -> F ( E Faith S ) G ) |