This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Directed integral analogue of ftc2 . (Contributed by Mario Carneiro, 3-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc2ditg.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| ftc2ditg.y | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | ||
| ftc2ditg.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ) | ||
| ftc2ditg.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ) | ||
| ftc2ditg.c | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | ||
| ftc2ditg.i | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ 𝐿1 ) | ||
| ftc2ditg.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) | ||
| Assertion | ftc2ditg | ⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc2ditg.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| 2 | ftc2ditg.y | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | |
| 3 | ftc2ditg.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 4 | ftc2ditg.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 5 | ftc2ditg.c | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | |
| 6 | ftc2ditg.i | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ 𝐿1 ) | |
| 7 | ftc2ditg.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) | |
| 8 | iccssre | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) | |
| 9 | 1 2 8 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
| 10 | 9 3 | sseldd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 11 | 9 4 | sseldd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 12 | 1 2 3 4 5 6 7 | ftc2ditglem | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 13 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ∈ V ) | |
| 14 | cncff | ⊢ ( ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) → ( ℝ D 𝐹 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) | |
| 15 | 5 14 | syl | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) |
| 16 | 15 | feqmptd | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
| 17 | 16 6 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 18 | 1 2 4 3 13 17 | ditgswap | ⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = - ⨜ [ 𝐵 → 𝐴 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ⨜ [ 𝐴 → 𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = - ⨜ [ 𝐵 → 𝐴 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
| 20 | 1 2 4 3 5 6 7 | ftc2ditglem | ⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ⨜ [ 𝐵 → 𝐴 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) ) |
| 21 | 20 | negeqd | ⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → - ⨜ [ 𝐵 → 𝐴 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = - ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) ) |
| 22 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → 𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | |
| 23 | 7 22 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
| 24 | 23 3 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 25 | 23 4 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
| 26 | 24 25 | negsubdi2d | ⊢ ( 𝜑 → - ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → - ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 28 | 19 21 27 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ⨜ [ 𝐴 → 𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 29 | 10 11 12 28 | lecasei | ⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |