This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a sum into two parts. A version of fsumsplit using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumsplitf.ph | ⊢ Ⅎ 𝑘 𝜑 | |
| fsumsplitf.ab | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) | ||
| fsumsplitf.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) | ||
| fsumsplitf.fi | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | ||
| fsumsplitf.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) | ||
| Assertion | fsumsplitf | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑈 𝐶 = ( Σ 𝑘 ∈ 𝐴 𝐶 + Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumsplitf.ph | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | fsumsplitf.ab | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) | |
| 3 | fsumsplitf.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) | |
| 4 | fsumsplitf.fi | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | |
| 5 | fsumsplitf.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) | |
| 6 | csbeq1a | ⊢ ( 𝑘 = 𝑗 → 𝐶 = ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) | |
| 7 | nfcv | ⊢ Ⅎ 𝑗 𝐶 | |
| 8 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 | |
| 9 | 6 7 8 | cbvsum | ⊢ Σ 𝑘 ∈ 𝑈 𝐶 = Σ 𝑗 ∈ 𝑈 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 |
| 10 | 9 | a1i | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑈 𝐶 = Σ 𝑗 ∈ 𝑈 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 11 | nfv | ⊢ Ⅎ 𝑘 𝑗 ∈ 𝑈 | |
| 12 | 1 11 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑈 ) |
| 13 | 8 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ |
| 14 | 12 13 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑈 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 15 | eleq1w | ⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑈 ↔ 𝑗 ∈ 𝑈 ) ) | |
| 16 | 15 | anbi2d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑈 ) ) ) |
| 17 | 6 | eleq1d | ⊢ ( 𝑘 = 𝑗 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 18 | 16 17 | imbi12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑈 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) ) |
| 19 | 14 18 5 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑈 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 20 | 2 3 4 19 | fsumsplit | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑈 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 = ( Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 + Σ 𝑗 ∈ 𝐵 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
| 21 | csbeq1a | ⊢ ( 𝑗 = 𝑘 → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) | |
| 22 | csbcow | ⊢ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 = ⦋ 𝑘 / 𝑘 ⦌ 𝐶 | |
| 23 | csbid | ⊢ ⦋ 𝑘 / 𝑘 ⦌ 𝐶 = 𝐶 | |
| 24 | 22 23 | eqtri | ⊢ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 = 𝐶 |
| 25 | 21 24 | eqtrdi | ⊢ ( 𝑗 = 𝑘 → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 = 𝐶 ) |
| 26 | 25 8 7 | cbvsum | ⊢ Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 = Σ 𝑘 ∈ 𝐴 𝐶 |
| 27 | 25 8 7 | cbvsum | ⊢ Σ 𝑗 ∈ 𝐵 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 |
| 28 | 26 27 | oveq12i | ⊢ ( Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 + Σ 𝑗 ∈ 𝐵 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐶 + Σ 𝑘 ∈ 𝐵 𝐶 ) |
| 29 | 28 | a1i | ⊢ ( 𝜑 → ( Σ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 + Σ 𝑗 ∈ 𝐵 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐶 + Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 30 | 10 20 29 | 3eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑈 𝐶 = ( Σ 𝑘 ∈ 𝐴 𝐶 + Σ 𝑘 ∈ 𝐵 𝐶 ) ) |