This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the finite recursive definition generator at a successor (special case where the characteristic function is a mapping abstraction and where the mapping class D is a proper class). This is a technical lemma that can be used together with frsucmpt to help eliminate redundant sethood antecedents. (Contributed by Scott Fenton, 19-Feb-2011) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frsucmpt.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| frsucmpt.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| frsucmpt.3 | ⊢ Ⅎ 𝑥 𝐷 | ||
| frsucmpt.4 | ⊢ 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) | ||
| frsucmpt.5 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝐵 ) → 𝐶 = 𝐷 ) | ||
| Assertion | frsucmptn | ⊢ ( ¬ 𝐷 ∈ V → ( 𝐹 ‘ suc 𝐵 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frsucmpt.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | frsucmpt.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | frsucmpt.3 | ⊢ Ⅎ 𝑥 𝐷 | |
| 4 | frsucmpt.4 | ⊢ 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) | |
| 5 | frsucmpt.5 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝐵 ) → 𝐶 = 𝐷 ) | |
| 6 | 4 | fveq1i | ⊢ ( 𝐹 ‘ suc 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) |
| 7 | frfnom | ⊢ ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) Fn ω | |
| 8 | fndm | ⊢ ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) Fn ω → dom ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) = ω ) | |
| 9 | 7 8 | ax-mp | ⊢ dom ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) = ω |
| 10 | 9 | eleq2i | ⊢ ( suc 𝐵 ∈ dom ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ↔ suc 𝐵 ∈ ω ) |
| 11 | peano2b | ⊢ ( 𝐵 ∈ ω ↔ suc 𝐵 ∈ ω ) | |
| 12 | frsuc | ⊢ ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) ) ) | |
| 13 | 4 | fveq1i | ⊢ ( 𝐹 ‘ 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) |
| 14 | 13 | fveq2i | ⊢ ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) ) |
| 15 | 12 14 | eqtr4di | ⊢ ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 16 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ V ↦ 𝐶 ) | |
| 17 | 16 1 | nfrdg | ⊢ Ⅎ 𝑥 rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) |
| 18 | nfcv | ⊢ Ⅎ 𝑥 ω | |
| 19 | 17 18 | nfres | ⊢ Ⅎ 𝑥 ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) |
| 20 | 4 19 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 21 | 20 2 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝐵 ) |
| 22 | eqid | ⊢ ( 𝑥 ∈ V ↦ 𝐶 ) = ( 𝑥 ∈ V ↦ 𝐶 ) | |
| 23 | 21 3 5 22 | fvmptnf | ⊢ ( ¬ 𝐷 ∈ V → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) = ∅ ) |
| 24 | 15 23 | sylan9eqr | ⊢ ( ( ¬ 𝐷 ∈ V ∧ 𝐵 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ∅ ) |
| 25 | 24 | ex | ⊢ ( ¬ 𝐷 ∈ V → ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ∅ ) ) |
| 26 | 11 25 | biimtrrid | ⊢ ( ¬ 𝐷 ∈ V → ( suc 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ∅ ) ) |
| 27 | 10 26 | biimtrid | ⊢ ( ¬ 𝐷 ∈ V → ( suc 𝐵 ∈ dom ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ∅ ) ) |
| 28 | ndmfv | ⊢ ( ¬ suc 𝐵 ∈ dom ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ∅ ) | |
| 29 | 27 28 | pm2.61d1 | ⊢ ( ¬ 𝐷 ∈ V → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ∅ ) |
| 30 | 6 29 | eqtrid | ⊢ ( ¬ 𝐷 ∈ V → ( 𝐹 ‘ suc 𝐵 ) = ∅ ) |