This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a function given by an ordered-pair class abstraction is the empty set when the class it would otherwise map to is a proper class. This version of fvmptn uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 21-Oct-2003) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| fvmptf.2 | ⊢ Ⅎ 𝑥 𝐶 | ||
| fvmptf.3 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | ||
| fvmptf.4 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) | ||
| Assertion | fvmptnf | ⊢ ( ¬ 𝐶 ∈ V → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | fvmptf.2 | ⊢ Ⅎ 𝑥 𝐶 | |
| 3 | fvmptf.3 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
| 4 | fvmptf.4 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) | |
| 5 | 4 | dmmptss | ⊢ dom 𝐹 ⊆ 𝐷 |
| 6 | 5 | sseli | ⊢ ( 𝐴 ∈ dom 𝐹 → 𝐴 ∈ 𝐷 ) |
| 7 | eqid | ⊢ ( 𝑥 ∈ 𝐷 ↦ ( I ‘ 𝐵 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( I ‘ 𝐵 ) ) | |
| 8 | 4 7 | fvmptex | ⊢ ( 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝐷 ↦ ( I ‘ 𝐵 ) ) ‘ 𝐴 ) |
| 9 | fvex | ⊢ ( I ‘ 𝐶 ) ∈ V | |
| 10 | nfcv | ⊢ Ⅎ 𝑥 I | |
| 11 | 10 2 | nffv | ⊢ Ⅎ 𝑥 ( I ‘ 𝐶 ) |
| 12 | 3 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( I ‘ 𝐵 ) = ( I ‘ 𝐶 ) ) |
| 13 | 1 11 12 7 | fvmptf | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ ( I ‘ 𝐶 ) ∈ V ) → ( ( 𝑥 ∈ 𝐷 ↦ ( I ‘ 𝐵 ) ) ‘ 𝐴 ) = ( I ‘ 𝐶 ) ) |
| 14 | 9 13 | mpan2 | ⊢ ( 𝐴 ∈ 𝐷 → ( ( 𝑥 ∈ 𝐷 ↦ ( I ‘ 𝐵 ) ) ‘ 𝐴 ) = ( I ‘ 𝐶 ) ) |
| 15 | 8 14 | eqtrid | ⊢ ( 𝐴 ∈ 𝐷 → ( 𝐹 ‘ 𝐴 ) = ( I ‘ 𝐶 ) ) |
| 16 | fvprc | ⊢ ( ¬ 𝐶 ∈ V → ( I ‘ 𝐶 ) = ∅ ) | |
| 17 | 15 16 | sylan9eq | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 18 | 17 | expcom | ⊢ ( ¬ 𝐶 ∈ V → ( 𝐴 ∈ 𝐷 → ( 𝐹 ‘ 𝐴 ) = ∅ ) ) |
| 19 | 6 18 | syl5 | ⊢ ( ¬ 𝐶 ∈ V → ( 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∅ ) ) |
| 20 | ndmfv | ⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∅ ) | |
| 21 | 19 20 | pm2.61d1 | ⊢ ( ¬ 𝐶 ∈ V → ( 𝐹 ‘ 𝐴 ) = ∅ ) |