This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the finite recursive definition generator at a successor (special case where the characteristic function is a mapping abstraction and where the mapping class D is a proper class). This is a technical lemma that can be used together with frsucmpt to help eliminate redundant sethood antecedents. (Contributed by Scott Fenton, 19-Feb-2011) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frsucmpt.1 | |- F/_ x A |
|
| frsucmpt.2 | |- F/_ x B |
||
| frsucmpt.3 | |- F/_ x D |
||
| frsucmpt.4 | |- F = ( rec ( ( x e. _V |-> C ) , A ) |` _om ) |
||
| frsucmpt.5 | |- ( x = ( F ` B ) -> C = D ) |
||
| Assertion | frsucmptn | |- ( -. D e. _V -> ( F ` suc B ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frsucmpt.1 | |- F/_ x A |
|
| 2 | frsucmpt.2 | |- F/_ x B |
|
| 3 | frsucmpt.3 | |- F/_ x D |
|
| 4 | frsucmpt.4 | |- F = ( rec ( ( x e. _V |-> C ) , A ) |` _om ) |
|
| 5 | frsucmpt.5 | |- ( x = ( F ` B ) -> C = D ) |
|
| 6 | 4 | fveq1i | |- ( F ` suc B ) = ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) |
| 7 | frfnom | |- ( rec ( ( x e. _V |-> C ) , A ) |` _om ) Fn _om |
|
| 8 | fndm | |- ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) Fn _om -> dom ( rec ( ( x e. _V |-> C ) , A ) |` _om ) = _om ) |
|
| 9 | 7 8 | ax-mp | |- dom ( rec ( ( x e. _V |-> C ) , A ) |` _om ) = _om |
| 10 | 9 | eleq2i | |- ( suc B e. dom ( rec ( ( x e. _V |-> C ) , A ) |` _om ) <-> suc B e. _om ) |
| 11 | peano2b | |- ( B e. _om <-> suc B e. _om ) |
|
| 12 | frsuc | |- ( B e. _om -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = ( ( x e. _V |-> C ) ` ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` B ) ) ) |
|
| 13 | 4 | fveq1i | |- ( F ` B ) = ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` B ) |
| 14 | 13 | fveq2i | |- ( ( x e. _V |-> C ) ` ( F ` B ) ) = ( ( x e. _V |-> C ) ` ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` B ) ) |
| 15 | 12 14 | eqtr4di | |- ( B e. _om -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = ( ( x e. _V |-> C ) ` ( F ` B ) ) ) |
| 16 | nfmpt1 | |- F/_ x ( x e. _V |-> C ) |
|
| 17 | 16 1 | nfrdg | |- F/_ x rec ( ( x e. _V |-> C ) , A ) |
| 18 | nfcv | |- F/_ x _om |
|
| 19 | 17 18 | nfres | |- F/_ x ( rec ( ( x e. _V |-> C ) , A ) |` _om ) |
| 20 | 4 19 | nfcxfr | |- F/_ x F |
| 21 | 20 2 | nffv | |- F/_ x ( F ` B ) |
| 22 | eqid | |- ( x e. _V |-> C ) = ( x e. _V |-> C ) |
|
| 23 | 21 3 5 22 | fvmptnf | |- ( -. D e. _V -> ( ( x e. _V |-> C ) ` ( F ` B ) ) = (/) ) |
| 24 | 15 23 | sylan9eqr | |- ( ( -. D e. _V /\ B e. _om ) -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) |
| 25 | 24 | ex | |- ( -. D e. _V -> ( B e. _om -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) ) |
| 26 | 11 25 | biimtrrid | |- ( -. D e. _V -> ( suc B e. _om -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) ) |
| 27 | 10 26 | biimtrid | |- ( -. D e. _V -> ( suc B e. dom ( rec ( ( x e. _V |-> C ) , A ) |` _om ) -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) ) |
| 28 | ndmfv | |- ( -. suc B e. dom ( rec ( ( x e. _V |-> C ) , A ) |` _om ) -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) |
|
| 29 | 27 28 | pm2.61d1 | |- ( -. D e. _V -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) |
| 30 | 6 29 | eqtrid | |- ( -. D e. _V -> ( F ` suc B ) = (/) ) |