This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. Properties of the restriction of an acceptable function to the domain of another acceptable function. (Contributed by Paul Chapman, 21-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frrlem4.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| Assertion | frrlem4 | |- ( ( g e. B /\ h e. B ) -> ( ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( a G ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem4.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| 2 | 1 | frrlem2 | |- ( g e. B -> Fun g ) |
| 3 | 2 | funfnd | |- ( g e. B -> g Fn dom g ) |
| 4 | fnresin1 | |- ( g Fn dom g -> ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) ) |
|
| 5 | 3 4 | syl | |- ( g e. B -> ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) ) |
| 6 | 5 | adantr | |- ( ( g e. B /\ h e. B ) -> ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) ) |
| 7 | 1 | frrlem1 | |- B = { g | E. b ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) } |
| 8 | 7 | eqabri | |- ( g e. B <-> E. b ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) ) |
| 9 | fndm | |- ( g Fn b -> dom g = b ) |
|
| 10 | 9 | adantr | |- ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) ) -> dom g = b ) |
| 11 | 10 | raleqdv | |- ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) ) -> ( A. a e. dom g ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) <-> A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) ) |
| 12 | 11 | biimp3ar | |- ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) -> A. a e. dom g ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) |
| 13 | rsp | |- ( A. a e. dom g ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) -> ( a e. dom g -> ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) ) |
|
| 14 | 12 13 | syl | |- ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) -> ( a e. dom g -> ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) ) |
| 15 | 14 | exlimiv | |- ( E. b ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) -> ( a e. dom g -> ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) ) |
| 16 | 8 15 | sylbi | |- ( g e. B -> ( a e. dom g -> ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) ) |
| 17 | elinel1 | |- ( a e. ( dom g i^i dom h ) -> a e. dom g ) |
|
| 18 | 16 17 | impel | |- ( ( g e. B /\ a e. ( dom g i^i dom h ) ) -> ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) |
| 19 | 18 | adantlr | |- ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) |
| 20 | simpr | |- ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> a e. ( dom g i^i dom h ) ) |
|
| 21 | 20 | fvresd | |- ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( g ` a ) ) |
| 22 | resres | |- ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) = ( g |` ( ( dom g i^i dom h ) i^i Pred ( R , ( dom g i^i dom h ) , a ) ) ) |
|
| 23 | predss | |- Pred ( R , ( dom g i^i dom h ) , a ) C_ ( dom g i^i dom h ) |
|
| 24 | sseqin2 | |- ( Pred ( R , ( dom g i^i dom h ) , a ) C_ ( dom g i^i dom h ) <-> ( ( dom g i^i dom h ) i^i Pred ( R , ( dom g i^i dom h ) , a ) ) = Pred ( R , ( dom g i^i dom h ) , a ) ) |
|
| 25 | 23 24 | mpbi | |- ( ( dom g i^i dom h ) i^i Pred ( R , ( dom g i^i dom h ) , a ) ) = Pred ( R , ( dom g i^i dom h ) , a ) |
| 26 | 1 | frrlem1 | |- B = { h | E. c ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) } |
| 27 | 26 | eqabri | |- ( h e. B <-> E. c ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) |
| 28 | exdistrv | |- ( E. b E. c ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) <-> ( E. b ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ E. c ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) ) |
|
| 29 | inss1 | |- ( b i^i c ) C_ b |
|
| 30 | simpl2l | |- ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> b C_ A ) |
|
| 31 | 29 30 | sstrid | |- ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> ( b i^i c ) C_ A ) |
| 32 | simp2r | |- ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) -> A. a e. b Pred ( R , A , a ) C_ b ) |
|
| 33 | simp2r | |- ( ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) -> A. a e. c Pred ( R , A , a ) C_ c ) |
|
| 34 | nfra1 | |- F/ a A. a e. b Pred ( R , A , a ) C_ b |
|
| 35 | nfra1 | |- F/ a A. a e. c Pred ( R , A , a ) C_ c |
|
| 36 | 34 35 | nfan | |- F/ a ( A. a e. b Pred ( R , A , a ) C_ b /\ A. a e. c Pred ( R , A , a ) C_ c ) |
| 37 | elinel1 | |- ( a e. ( b i^i c ) -> a e. b ) |
|
| 38 | rsp | |- ( A. a e. b Pred ( R , A , a ) C_ b -> ( a e. b -> Pred ( R , A , a ) C_ b ) ) |
|
| 39 | 37 38 | syl5com | |- ( a e. ( b i^i c ) -> ( A. a e. b Pred ( R , A , a ) C_ b -> Pred ( R , A , a ) C_ b ) ) |
| 40 | elinel2 | |- ( a e. ( b i^i c ) -> a e. c ) |
|
| 41 | rsp | |- ( A. a e. c Pred ( R , A , a ) C_ c -> ( a e. c -> Pred ( R , A , a ) C_ c ) ) |
|
| 42 | 40 41 | syl5com | |- ( a e. ( b i^i c ) -> ( A. a e. c Pred ( R , A , a ) C_ c -> Pred ( R , A , a ) C_ c ) ) |
| 43 | 39 42 | anim12d | |- ( a e. ( b i^i c ) -> ( ( A. a e. b Pred ( R , A , a ) C_ b /\ A. a e. c Pred ( R , A , a ) C_ c ) -> ( Pred ( R , A , a ) C_ b /\ Pred ( R , A , a ) C_ c ) ) ) |
| 44 | ssin | |- ( ( Pred ( R , A , a ) C_ b /\ Pred ( R , A , a ) C_ c ) <-> Pred ( R , A , a ) C_ ( b i^i c ) ) |
|
| 45 | 44 | biimpi | |- ( ( Pred ( R , A , a ) C_ b /\ Pred ( R , A , a ) C_ c ) -> Pred ( R , A , a ) C_ ( b i^i c ) ) |
| 46 | 43 45 | syl6com | |- ( ( A. a e. b Pred ( R , A , a ) C_ b /\ A. a e. c Pred ( R , A , a ) C_ c ) -> ( a e. ( b i^i c ) -> Pred ( R , A , a ) C_ ( b i^i c ) ) ) |
| 47 | 36 46 | ralrimi | |- ( ( A. a e. b Pred ( R , A , a ) C_ b /\ A. a e. c Pred ( R , A , a ) C_ c ) -> A. a e. ( b i^i c ) Pred ( R , A , a ) C_ ( b i^i c ) ) |
| 48 | 32 33 47 | syl2an | |- ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> A. a e. ( b i^i c ) Pred ( R , A , a ) C_ ( b i^i c ) ) |
| 49 | simpl1 | |- ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> g Fn b ) |
|
| 50 | 49 | fndmd | |- ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> dom g = b ) |
| 51 | simpr1 | |- ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> h Fn c ) |
|
| 52 | 51 | fndmd | |- ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> dom h = c ) |
| 53 | ineq12 | |- ( ( dom g = b /\ dom h = c ) -> ( dom g i^i dom h ) = ( b i^i c ) ) |
|
| 54 | 53 | sseq1d | |- ( ( dom g = b /\ dom h = c ) -> ( ( dom g i^i dom h ) C_ A <-> ( b i^i c ) C_ A ) ) |
| 55 | 53 | sseq2d | |- ( ( dom g = b /\ dom h = c ) -> ( Pred ( R , A , a ) C_ ( dom g i^i dom h ) <-> Pred ( R , A , a ) C_ ( b i^i c ) ) ) |
| 56 | 53 55 | raleqbidv | |- ( ( dom g = b /\ dom h = c ) -> ( A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) <-> A. a e. ( b i^i c ) Pred ( R , A , a ) C_ ( b i^i c ) ) ) |
| 57 | 54 56 | anbi12d | |- ( ( dom g = b /\ dom h = c ) -> ( ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) <-> ( ( b i^i c ) C_ A /\ A. a e. ( b i^i c ) Pred ( R , A , a ) C_ ( b i^i c ) ) ) ) |
| 58 | 50 52 57 | syl2anc | |- ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> ( ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) <-> ( ( b i^i c ) C_ A /\ A. a e. ( b i^i c ) Pred ( R , A , a ) C_ ( b i^i c ) ) ) ) |
| 59 | 31 48 58 | mpbir2and | |- ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) |
| 60 | 59 | exlimivv | |- ( E. b E. c ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) |
| 61 | 28 60 | sylbir | |- ( ( E. b ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ E. c ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) |
| 62 | 8 27 61 | syl2anb | |- ( ( g e. B /\ h e. B ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) |
| 63 | 62 | adantr | |- ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) |
| 64 | preddowncl | |- ( ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) -> ( a e. ( dom g i^i dom h ) -> Pred ( R , ( dom g i^i dom h ) , a ) = Pred ( R , A , a ) ) ) |
|
| 65 | 63 20 64 | sylc | |- ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> Pred ( R , ( dom g i^i dom h ) , a ) = Pred ( R , A , a ) ) |
| 66 | 25 65 | eqtrid | |- ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( ( dom g i^i dom h ) i^i Pred ( R , ( dom g i^i dom h ) , a ) ) = Pred ( R , A , a ) ) |
| 67 | 66 | reseq2d | |- ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( g |` ( ( dom g i^i dom h ) i^i Pred ( R , ( dom g i^i dom h ) , a ) ) ) = ( g |` Pred ( R , A , a ) ) ) |
| 68 | 22 67 | eqtrid | |- ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) = ( g |` Pred ( R , A , a ) ) ) |
| 69 | 68 | oveq2d | |- ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( a G ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) |
| 70 | 19 21 69 | 3eqtr4d | |- ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( a G ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) |
| 71 | 70 | ralrimiva | |- ( ( g e. B /\ h e. B ) -> A. a e. ( dom g i^i dom h ) ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( a G ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) |
| 72 | 6 71 | jca | |- ( ( g e. B /\ h e. B ) -> ( ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( a G ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) ) |