This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A property of classes that are downward closed under predecessor. (Contributed by Scott Fenton, 13-Apr-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | preddowncl | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ) → ( 𝑋 ∈ 𝐵 → Pred ( 𝑅 , 𝐵 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑦 = 𝑋 → ( 𝑦 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵 ) ) | |
| 2 | predeq3 | ⊢ ( 𝑦 = 𝑋 → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , 𝐵 , 𝑋 ) ) | |
| 3 | predeq3 | ⊢ ( 𝑦 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) | |
| 4 | 2 3 | eqeq12d | ⊢ ( 𝑦 = 𝑋 → ( Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑦 ) ↔ Pred ( 𝑅 , 𝐵 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
| 5 | 1 4 | imbi12d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝑦 ∈ 𝐵 → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ↔ ( 𝑋 ∈ 𝐵 → Pred ( 𝑅 , 𝐵 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑦 = 𝑋 → ( ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ) → ( 𝑦 ∈ 𝐵 → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ) → ( 𝑋 ∈ 𝐵 → Pred ( 𝑅 , 𝐵 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) ) |
| 7 | predpredss | ⊢ ( 𝐵 ⊆ 𝐴 → Pred ( 𝑅 , 𝐵 , 𝑦 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) | |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) |
| 9 | predeq3 | ⊢ ( 𝑥 = 𝑦 → Pred ( 𝑅 , 𝐴 , 𝑥 ) = Pred ( 𝑅 , 𝐴 , 𝑦 ) ) | |
| 10 | 9 | sseq1d | ⊢ ( 𝑥 = 𝑦 → ( Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ↔ Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ) ) |
| 11 | 10 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ) |
| 12 | 11 | sseld | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) → 𝑧 ∈ 𝐵 ) ) |
| 13 | vex | ⊢ 𝑦 ∈ V | |
| 14 | 13 | elpredim | ⊢ ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) → 𝑧 𝑅 𝑦 ) |
| 15 | 12 14 | jca2 | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) → ( 𝑧 ∈ 𝐵 ∧ 𝑧 𝑅 𝑦 ) ) ) |
| 16 | vex | ⊢ 𝑧 ∈ V | |
| 17 | 16 | elpred | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ Pred ( 𝑅 , 𝐵 , 𝑦 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑧 𝑅 𝑦 ) ) ) |
| 18 | 17 | imbi2d | ⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) → 𝑧 ∈ Pred ( 𝑅 , 𝐵 , 𝑦 ) ) ↔ ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) → ( 𝑧 ∈ 𝐵 ∧ 𝑧 𝑅 𝑦 ) ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) → 𝑧 ∈ Pred ( 𝑅 , 𝐵 , 𝑦 ) ) ↔ ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) → ( 𝑧 ∈ 𝐵 ∧ 𝑧 𝑅 𝑦 ) ) ) ) |
| 20 | 15 19 | mpbird | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) → 𝑧 ∈ Pred ( 𝑅 , 𝐵 , 𝑦 ) ) ) |
| 21 | 20 | ssrdv | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ Pred ( 𝑅 , 𝐵 , 𝑦 ) ) |
| 22 | 21 | adantll | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ Pred ( 𝑅 , 𝐵 , 𝑦 ) ) |
| 23 | 8 22 | eqssd | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑦 ) ) |
| 24 | 23 | ex | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ) → ( 𝑦 ∈ 𝐵 → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
| 25 | 6 24 | vtoclg | ⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ) → ( 𝑋 ∈ 𝐵 → Pred ( 𝑅 , 𝐵 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |
| 26 | 25 | pm2.43b | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ) → ( 𝑋 ∈ 𝐵 → Pred ( 𝑅 , 𝐵 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |