This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frmdup.m | |- M = ( freeMnd ` I ) |
|
| frmdup.b | |- B = ( Base ` G ) |
||
| frmdup.e | |- E = ( x e. Word I |-> ( G gsum ( A o. x ) ) ) |
||
| frmdup.g | |- ( ph -> G e. Mnd ) |
||
| frmdup.i | |- ( ph -> I e. X ) |
||
| frmdup.a | |- ( ph -> A : I --> B ) |
||
| Assertion | frmdup1 | |- ( ph -> E e. ( M MndHom G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdup.m | |- M = ( freeMnd ` I ) |
|
| 2 | frmdup.b | |- B = ( Base ` G ) |
|
| 3 | frmdup.e | |- E = ( x e. Word I |-> ( G gsum ( A o. x ) ) ) |
|
| 4 | frmdup.g | |- ( ph -> G e. Mnd ) |
|
| 5 | frmdup.i | |- ( ph -> I e. X ) |
|
| 6 | frmdup.a | |- ( ph -> A : I --> B ) |
|
| 7 | 1 | frmdmnd | |- ( I e. X -> M e. Mnd ) |
| 8 | 5 7 | syl | |- ( ph -> M e. Mnd ) |
| 9 | 4 | adantr | |- ( ( ph /\ x e. Word I ) -> G e. Mnd ) |
| 10 | simpr | |- ( ( ph /\ x e. Word I ) -> x e. Word I ) |
|
| 11 | 6 | adantr | |- ( ( ph /\ x e. Word I ) -> A : I --> B ) |
| 12 | wrdco | |- ( ( x e. Word I /\ A : I --> B ) -> ( A o. x ) e. Word B ) |
|
| 13 | 10 11 12 | syl2anc | |- ( ( ph /\ x e. Word I ) -> ( A o. x ) e. Word B ) |
| 14 | 2 | gsumwcl | |- ( ( G e. Mnd /\ ( A o. x ) e. Word B ) -> ( G gsum ( A o. x ) ) e. B ) |
| 15 | 9 13 14 | syl2anc | |- ( ( ph /\ x e. Word I ) -> ( G gsum ( A o. x ) ) e. B ) |
| 16 | 15 3 | fmptd | |- ( ph -> E : Word I --> B ) |
| 17 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 18 | 1 17 | frmdbas | |- ( I e. X -> ( Base ` M ) = Word I ) |
| 19 | 5 18 | syl | |- ( ph -> ( Base ` M ) = Word I ) |
| 20 | 19 | feq2d | |- ( ph -> ( E : ( Base ` M ) --> B <-> E : Word I --> B ) ) |
| 21 | 16 20 | mpbird | |- ( ph -> E : ( Base ` M ) --> B ) |
| 22 | 1 17 | frmdelbas | |- ( y e. ( Base ` M ) -> y e. Word I ) |
| 23 | 22 | ad2antrl | |- ( ( ph /\ ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> y e. Word I ) |
| 24 | 1 17 | frmdelbas | |- ( z e. ( Base ` M ) -> z e. Word I ) |
| 25 | 24 | ad2antll | |- ( ( ph /\ ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> z e. Word I ) |
| 26 | 6 | adantr | |- ( ( ph /\ ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> A : I --> B ) |
| 27 | ccatco | |- ( ( y e. Word I /\ z e. Word I /\ A : I --> B ) -> ( A o. ( y ++ z ) ) = ( ( A o. y ) ++ ( A o. z ) ) ) |
|
| 28 | 23 25 26 27 | syl3anc | |- ( ( ph /\ ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( A o. ( y ++ z ) ) = ( ( A o. y ) ++ ( A o. z ) ) ) |
| 29 | 28 | oveq2d | |- ( ( ph /\ ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( G gsum ( A o. ( y ++ z ) ) ) = ( G gsum ( ( A o. y ) ++ ( A o. z ) ) ) ) |
| 30 | 4 | adantr | |- ( ( ph /\ ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> G e. Mnd ) |
| 31 | wrdco | |- ( ( y e. Word I /\ A : I --> B ) -> ( A o. y ) e. Word B ) |
|
| 32 | 23 26 31 | syl2anc | |- ( ( ph /\ ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( A o. y ) e. Word B ) |
| 33 | wrdco | |- ( ( z e. Word I /\ A : I --> B ) -> ( A o. z ) e. Word B ) |
|
| 34 | 25 26 33 | syl2anc | |- ( ( ph /\ ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( A o. z ) e. Word B ) |
| 35 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 36 | 2 35 | gsumccat | |- ( ( G e. Mnd /\ ( A o. y ) e. Word B /\ ( A o. z ) e. Word B ) -> ( G gsum ( ( A o. y ) ++ ( A o. z ) ) ) = ( ( G gsum ( A o. y ) ) ( +g ` G ) ( G gsum ( A o. z ) ) ) ) |
| 37 | 30 32 34 36 | syl3anc | |- ( ( ph /\ ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( G gsum ( ( A o. y ) ++ ( A o. z ) ) ) = ( ( G gsum ( A o. y ) ) ( +g ` G ) ( G gsum ( A o. z ) ) ) ) |
| 38 | 29 37 | eqtrd | |- ( ( ph /\ ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( G gsum ( A o. ( y ++ z ) ) ) = ( ( G gsum ( A o. y ) ) ( +g ` G ) ( G gsum ( A o. z ) ) ) ) |
| 39 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 40 | 1 17 39 | frmdadd | |- ( ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) -> ( y ( +g ` M ) z ) = ( y ++ z ) ) |
| 41 | 40 | adantl | |- ( ( ph /\ ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( y ( +g ` M ) z ) = ( y ++ z ) ) |
| 42 | 41 | fveq2d | |- ( ( ph /\ ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( E ` ( y ( +g ` M ) z ) ) = ( E ` ( y ++ z ) ) ) |
| 43 | ccatcl | |- ( ( y e. Word I /\ z e. Word I ) -> ( y ++ z ) e. Word I ) |
|
| 44 | 23 25 43 | syl2anc | |- ( ( ph /\ ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( y ++ z ) e. Word I ) |
| 45 | coeq2 | |- ( x = ( y ++ z ) -> ( A o. x ) = ( A o. ( y ++ z ) ) ) |
|
| 46 | 45 | oveq2d | |- ( x = ( y ++ z ) -> ( G gsum ( A o. x ) ) = ( G gsum ( A o. ( y ++ z ) ) ) ) |
| 47 | ovex | |- ( G gsum ( A o. x ) ) e. _V |
|
| 48 | 46 3 47 | fvmpt3i | |- ( ( y ++ z ) e. Word I -> ( E ` ( y ++ z ) ) = ( G gsum ( A o. ( y ++ z ) ) ) ) |
| 49 | 44 48 | syl | |- ( ( ph /\ ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( E ` ( y ++ z ) ) = ( G gsum ( A o. ( y ++ z ) ) ) ) |
| 50 | 42 49 | eqtrd | |- ( ( ph /\ ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( E ` ( y ( +g ` M ) z ) ) = ( G gsum ( A o. ( y ++ z ) ) ) ) |
| 51 | coeq2 | |- ( x = y -> ( A o. x ) = ( A o. y ) ) |
|
| 52 | 51 | oveq2d | |- ( x = y -> ( G gsum ( A o. x ) ) = ( G gsum ( A o. y ) ) ) |
| 53 | 52 3 47 | fvmpt3i | |- ( y e. Word I -> ( E ` y ) = ( G gsum ( A o. y ) ) ) |
| 54 | coeq2 | |- ( x = z -> ( A o. x ) = ( A o. z ) ) |
|
| 55 | 54 | oveq2d | |- ( x = z -> ( G gsum ( A o. x ) ) = ( G gsum ( A o. z ) ) ) |
| 56 | 55 3 47 | fvmpt3i | |- ( z e. Word I -> ( E ` z ) = ( G gsum ( A o. z ) ) ) |
| 57 | 53 56 | oveqan12d | |- ( ( y e. Word I /\ z e. Word I ) -> ( ( E ` y ) ( +g ` G ) ( E ` z ) ) = ( ( G gsum ( A o. y ) ) ( +g ` G ) ( G gsum ( A o. z ) ) ) ) |
| 58 | 23 25 57 | syl2anc | |- ( ( ph /\ ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( ( E ` y ) ( +g ` G ) ( E ` z ) ) = ( ( G gsum ( A o. y ) ) ( +g ` G ) ( G gsum ( A o. z ) ) ) ) |
| 59 | 38 50 58 | 3eqtr4d | |- ( ( ph /\ ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( E ` ( y ( +g ` M ) z ) ) = ( ( E ` y ) ( +g ` G ) ( E ` z ) ) ) |
| 60 | 59 | ralrimivva | |- ( ph -> A. y e. ( Base ` M ) A. z e. ( Base ` M ) ( E ` ( y ( +g ` M ) z ) ) = ( ( E ` y ) ( +g ` G ) ( E ` z ) ) ) |
| 61 | wrd0 | |- (/) e. Word I |
|
| 62 | coeq2 | |- ( x = (/) -> ( A o. x ) = ( A o. (/) ) ) |
|
| 63 | co02 | |- ( A o. (/) ) = (/) |
|
| 64 | 62 63 | eqtrdi | |- ( x = (/) -> ( A o. x ) = (/) ) |
| 65 | 64 | oveq2d | |- ( x = (/) -> ( G gsum ( A o. x ) ) = ( G gsum (/) ) ) |
| 66 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 67 | 66 | gsum0 | |- ( G gsum (/) ) = ( 0g ` G ) |
| 68 | 65 67 | eqtrdi | |- ( x = (/) -> ( G gsum ( A o. x ) ) = ( 0g ` G ) ) |
| 69 | 68 3 47 | fvmpt3i | |- ( (/) e. Word I -> ( E ` (/) ) = ( 0g ` G ) ) |
| 70 | 61 69 | mp1i | |- ( ph -> ( E ` (/) ) = ( 0g ` G ) ) |
| 71 | 21 60 70 | 3jca | |- ( ph -> ( E : ( Base ` M ) --> B /\ A. y e. ( Base ` M ) A. z e. ( Base ` M ) ( E ` ( y ( +g ` M ) z ) ) = ( ( E ` y ) ( +g ` G ) ( E ` z ) ) /\ ( E ` (/) ) = ( 0g ` G ) ) ) |
| 72 | 1 | frmd0 | |- (/) = ( 0g ` M ) |
| 73 | 17 2 39 35 72 66 | ismhm | |- ( E e. ( M MndHom G ) <-> ( ( M e. Mnd /\ G e. Mnd ) /\ ( E : ( Base ` M ) --> B /\ A. y e. ( Base ` M ) A. z e. ( Base ` M ) ( E ` ( y ( +g ` M ) z ) ) = ( ( E ` y ) ( +g ` G ) ( E ` z ) ) /\ ( E ` (/) ) = ( 0g ` G ) ) ) ) |
| 74 | 8 4 71 73 | syl21anbrc | |- ( ph -> E e. ( M MndHom G ) ) |