This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frmdup.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| frmdup.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| frmdup.e | ⊢ 𝐸 = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) | ||
| frmdup.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| frmdup.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) | ||
| frmdup.a | ⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐵 ) | ||
| frmdup2.u | ⊢ 𝑈 = ( varFMnd ‘ 𝐼 ) | ||
| frmdup2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) | ||
| Assertion | frmdup2 | ⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑈 ‘ 𝑌 ) ) = ( 𝐴 ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdup.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| 2 | frmdup.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | frmdup.e | ⊢ 𝐸 = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) | |
| 4 | frmdup.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 5 | frmdup.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) | |
| 6 | frmdup.a | ⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐵 ) | |
| 7 | frmdup2.u | ⊢ 𝑈 = ( varFMnd ‘ 𝐼 ) | |
| 8 | frmdup2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) | |
| 9 | 7 | vrmdval | ⊢ ( ( 𝐼 ∈ 𝑋 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑈 ‘ 𝑌 ) = 〈“ 𝑌 ”〉 ) |
| 10 | 5 8 9 | syl2anc | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑌 ) = 〈“ 𝑌 ”〉 ) |
| 11 | 10 | fveq2d | ⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑈 ‘ 𝑌 ) ) = ( 𝐸 ‘ 〈“ 𝑌 ”〉 ) ) |
| 12 | 8 | s1cld | ⊢ ( 𝜑 → 〈“ 𝑌 ”〉 ∈ Word 𝐼 ) |
| 13 | coeq2 | ⊢ ( 𝑥 = 〈“ 𝑌 ”〉 → ( 𝐴 ∘ 𝑥 ) = ( 𝐴 ∘ 〈“ 𝑌 ”〉 ) ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝑥 = 〈“ 𝑌 ”〉 → ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) = ( 𝐺 Σg ( 𝐴 ∘ 〈“ 𝑌 ”〉 ) ) ) |
| 15 | ovex | ⊢ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ∈ V | |
| 16 | 14 3 15 | fvmpt3i | ⊢ ( 〈“ 𝑌 ”〉 ∈ Word 𝐼 → ( 𝐸 ‘ 〈“ 𝑌 ”〉 ) = ( 𝐺 Σg ( 𝐴 ∘ 〈“ 𝑌 ”〉 ) ) ) |
| 17 | 12 16 | syl | ⊢ ( 𝜑 → ( 𝐸 ‘ 〈“ 𝑌 ”〉 ) = ( 𝐺 Σg ( 𝐴 ∘ 〈“ 𝑌 ”〉 ) ) ) |
| 18 | s1co | ⊢ ( ( 𝑌 ∈ 𝐼 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝐴 ∘ 〈“ 𝑌 ”〉 ) = 〈“ ( 𝐴 ‘ 𝑌 ) ”〉 ) | |
| 19 | 8 6 18 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ∘ 〈“ 𝑌 ”〉 ) = 〈“ ( 𝐴 ‘ 𝑌 ) ”〉 ) |
| 20 | 19 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐴 ∘ 〈“ 𝑌 ”〉 ) ) = ( 𝐺 Σg 〈“ ( 𝐴 ‘ 𝑌 ) ”〉 ) ) |
| 21 | 6 8 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑌 ) ∈ 𝐵 ) |
| 22 | 2 | gsumws1 | ⊢ ( ( 𝐴 ‘ 𝑌 ) ∈ 𝐵 → ( 𝐺 Σg 〈“ ( 𝐴 ‘ 𝑌 ) ”〉 ) = ( 𝐴 ‘ 𝑌 ) ) |
| 23 | 21 22 | syl | ⊢ ( 𝜑 → ( 𝐺 Σg 〈“ ( 𝐴 ‘ 𝑌 ) ”〉 ) = ( 𝐴 ‘ 𝑌 ) ) |
| 24 | 17 20 23 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐸 ‘ 〈“ 𝑌 ”〉 ) = ( 𝐴 ‘ 𝑌 ) ) |
| 25 | 11 24 | eqtrd | ⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑈 ‘ 𝑌 ) ) = ( 𝐴 ‘ 𝑌 ) ) |