This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of a free module. (Contributed by Thierry Arnoux, 20-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmphl.y | |- Y = ( R freeLMod I ) |
|
| frlmphl.b | |- B = ( Base ` R ) |
||
| frlmphl.t | |- .x. = ( .r ` R ) |
||
| Assertion | frlmip | |- ( ( I e. W /\ R e. V ) -> ( f e. ( B ^m I ) , g e. ( B ^m I ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) ) = ( .i ` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmphl.y | |- Y = ( R freeLMod I ) |
|
| 2 | frlmphl.b | |- B = ( Base ` R ) |
|
| 3 | frlmphl.t | |- .x. = ( .r ` R ) |
|
| 4 | eqid | |- ( R freeLMod I ) = ( R freeLMod I ) |
|
| 5 | eqid | |- ( Base ` ( R freeLMod I ) ) = ( Base ` ( R freeLMod I ) ) |
|
| 6 | 4 5 | frlmpws | |- ( ( R e. V /\ I e. W ) -> ( R freeLMod I ) = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` ( R freeLMod I ) ) ) ) |
| 7 | 6 | ancoms | |- ( ( I e. W /\ R e. V ) -> ( R freeLMod I ) = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` ( R freeLMod I ) ) ) ) |
| 8 | 2 | ressid | |- ( R e. V -> ( R |`s B ) = R ) |
| 9 | eqidd | |- ( R e. V -> ( ( subringAlg ` R ) ` B ) = ( ( subringAlg ` R ) ` B ) ) |
|
| 10 | 2 | eqimssi | |- B C_ ( Base ` R ) |
| 11 | 10 | a1i | |- ( R e. V -> B C_ ( Base ` R ) ) |
| 12 | 9 11 | srasca | |- ( R e. V -> ( R |`s B ) = ( Scalar ` ( ( subringAlg ` R ) ` B ) ) ) |
| 13 | 8 12 | eqtr3d | |- ( R e. V -> R = ( Scalar ` ( ( subringAlg ` R ) ` B ) ) ) |
| 14 | 13 | oveq1d | |- ( R e. V -> ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) = ( ( Scalar ` ( ( subringAlg ` R ) ` B ) ) Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
| 15 | 14 | adantl | |- ( ( I e. W /\ R e. V ) -> ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) = ( ( Scalar ` ( ( subringAlg ` R ) ` B ) ) Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
| 16 | fvex | |- ( ( subringAlg ` R ) ` B ) e. _V |
|
| 17 | rlmval | |- ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
|
| 18 | 2 | fveq2i | |- ( ( subringAlg ` R ) ` B ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
| 19 | 17 18 | eqtr4i | |- ( ringLMod ` R ) = ( ( subringAlg ` R ) ` B ) |
| 20 | 19 | oveq1i | |- ( ( ringLMod ` R ) ^s I ) = ( ( ( subringAlg ` R ) ` B ) ^s I ) |
| 21 | eqid | |- ( Scalar ` ( ( subringAlg ` R ) ` B ) ) = ( Scalar ` ( ( subringAlg ` R ) ` B ) ) |
|
| 22 | 20 21 | pwsval | |- ( ( ( ( subringAlg ` R ) ` B ) e. _V /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ( subringAlg ` R ) ` B ) ) Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
| 23 | 16 22 | mpan | |- ( I e. W -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ( subringAlg ` R ) ` B ) ) Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
| 24 | 23 | adantr | |- ( ( I e. W /\ R e. V ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ( subringAlg ` R ) ` B ) ) Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
| 25 | 15 24 | eqtr4d | |- ( ( I e. W /\ R e. V ) -> ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) = ( ( ringLMod ` R ) ^s I ) ) |
| 26 | 1 | fveq2i | |- ( Base ` Y ) = ( Base ` ( R freeLMod I ) ) |
| 27 | 26 | a1i | |- ( ( I e. W /\ R e. V ) -> ( Base ` Y ) = ( Base ` ( R freeLMod I ) ) ) |
| 28 | 25 27 | oveq12d | |- ( ( I e. W /\ R e. V ) -> ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` ( R freeLMod I ) ) ) ) |
| 29 | 7 28 | eqtr4d | |- ( ( I e. W /\ R e. V ) -> ( R freeLMod I ) = ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) |
| 30 | 1 29 | eqtrid | |- ( ( I e. W /\ R e. V ) -> Y = ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) |
| 31 | 30 | fveq2d | |- ( ( I e. W /\ R e. V ) -> ( .i ` Y ) = ( .i ` ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) ) |
| 32 | fvex | |- ( Base ` Y ) e. _V |
|
| 33 | eqid | |- ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) = ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) |
|
| 34 | eqid | |- ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
|
| 35 | 33 34 | ressip | |- ( ( Base ` Y ) e. _V -> ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( .i ` ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) ) |
| 36 | 32 35 | ax-mp | |- ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( .i ` ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) |
| 37 | eqid | |- ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) = ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |
|
| 38 | simpr | |- ( ( I e. W /\ R e. V ) -> R e. V ) |
|
| 39 | snex | |- { ( ( subringAlg ` R ) ` B ) } e. _V |
|
| 40 | xpexg | |- ( ( I e. W /\ { ( ( subringAlg ` R ) ` B ) } e. _V ) -> ( I X. { ( ( subringAlg ` R ) ` B ) } ) e. _V ) |
|
| 41 | 39 40 | mpan2 | |- ( I e. W -> ( I X. { ( ( subringAlg ` R ) ` B ) } ) e. _V ) |
| 42 | 41 | adantr | |- ( ( I e. W /\ R e. V ) -> ( I X. { ( ( subringAlg ` R ) ` B ) } ) e. _V ) |
| 43 | eqid | |- ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
|
| 44 | 16 | snnz | |- { ( ( subringAlg ` R ) ` B ) } =/= (/) |
| 45 | dmxp | |- ( { ( ( subringAlg ` R ) ` B ) } =/= (/) -> dom ( I X. { ( ( subringAlg ` R ) ` B ) } ) = I ) |
|
| 46 | 44 45 | mp1i | |- ( ( I e. W /\ R e. V ) -> dom ( I X. { ( ( subringAlg ` R ) ` B ) } ) = I ) |
| 47 | 37 38 42 43 46 34 | prdsip | |- ( ( I e. W /\ R e. V ) -> ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( f e. ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) , g e. ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) ) ) ) ) |
| 48 | 37 38 42 43 46 | prdsbas | |- ( ( I e. W /\ R e. V ) -> ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = X_ x e. I ( Base ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ) |
| 49 | eqidd | |- ( x e. I -> ( ( subringAlg ` R ) ` B ) = ( ( subringAlg ` R ) ` B ) ) |
|
| 50 | 10 | a1i | |- ( x e. I -> B C_ ( Base ` R ) ) |
| 51 | 49 50 | srabase | |- ( x e. I -> ( Base ` R ) = ( Base ` ( ( subringAlg ` R ) ` B ) ) ) |
| 52 | 2 | a1i | |- ( x e. I -> B = ( Base ` R ) ) |
| 53 | 16 | fvconst2 | |- ( x e. I -> ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) = ( ( subringAlg ` R ) ` B ) ) |
| 54 | 53 | fveq2d | |- ( x e. I -> ( Base ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) = ( Base ` ( ( subringAlg ` R ) ` B ) ) ) |
| 55 | 51 52 54 | 3eqtr4rd | |- ( x e. I -> ( Base ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) = B ) |
| 56 | 55 | adantl | |- ( ( ( I e. W /\ R e. V ) /\ x e. I ) -> ( Base ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) = B ) |
| 57 | 56 | ixpeq2dva | |- ( ( I e. W /\ R e. V ) -> X_ x e. I ( Base ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) = X_ x e. I B ) |
| 58 | 2 | fvexi | |- B e. _V |
| 59 | ixpconstg | |- ( ( I e. W /\ B e. _V ) -> X_ x e. I B = ( B ^m I ) ) |
|
| 60 | 58 59 | mpan2 | |- ( I e. W -> X_ x e. I B = ( B ^m I ) ) |
| 61 | 60 | adantr | |- ( ( I e. W /\ R e. V ) -> X_ x e. I B = ( B ^m I ) ) |
| 62 | 48 57 61 | 3eqtrd | |- ( ( I e. W /\ R e. V ) -> ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( B ^m I ) ) |
| 63 | 53 50 | sraip | |- ( x e. I -> ( .r ` R ) = ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ) |
| 64 | 3 63 | eqtr2id | |- ( x e. I -> ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) = .x. ) |
| 65 | 64 | oveqd | |- ( x e. I -> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) = ( ( f ` x ) .x. ( g ` x ) ) ) |
| 66 | 65 | mpteq2ia | |- ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) |
| 67 | 66 | oveq2i | |- ( R gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) ) ) = ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) |
| 68 | 67 | a1i | |- ( ( I e. W /\ R e. V ) -> ( R gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) ) ) = ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) ) |
| 69 | 62 62 68 | mpoeq123dv | |- ( ( I e. W /\ R e. V ) -> ( f e. ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) , g e. ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) ) ) ) = ( f e. ( B ^m I ) , g e. ( B ^m I ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) ) ) |
| 70 | 47 69 | eqtrd | |- ( ( I e. W /\ R e. V ) -> ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( f e. ( B ^m I ) , g e. ( B ^m I ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) ) ) |
| 71 | 36 70 | eqtr3id | |- ( ( I e. W /\ R e. V ) -> ( .i ` ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) = ( f e. ( B ^m I ) , g e. ( B ^m I ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) ) ) |
| 72 | 31 71 | eqtr2d | |- ( ( I e. W /\ R e. V ) -> ( f e. ( B ^m I ) , g e. ( B ^m I ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) ) = ( .i ` Y ) ) |