This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmval | ⊢ ( ringLMod ‘ 𝑊 ) = ( ( subringAlg ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑎 = 𝑊 → ( subringAlg ‘ 𝑎 ) = ( subringAlg ‘ 𝑊 ) ) | |
| 2 | fveq2 | ⊢ ( 𝑎 = 𝑊 → ( Base ‘ 𝑎 ) = ( Base ‘ 𝑊 ) ) | |
| 3 | 1 2 | fveq12d | ⊢ ( 𝑎 = 𝑊 → ( ( subringAlg ‘ 𝑎 ) ‘ ( Base ‘ 𝑎 ) ) = ( ( subringAlg ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ) |
| 4 | df-rgmod | ⊢ ringLMod = ( 𝑎 ∈ V ↦ ( ( subringAlg ‘ 𝑎 ) ‘ ( Base ‘ 𝑎 ) ) ) | |
| 5 | fvex | ⊢ ( ( subringAlg ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ∈ V | |
| 6 | 3 4 5 | fvmpt | ⊢ ( 𝑊 ∈ V → ( ringLMod ‘ 𝑊 ) = ( ( subringAlg ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ) |
| 7 | 0fv | ⊢ ( ∅ ‘ ( Base ‘ 𝑊 ) ) = ∅ | |
| 8 | 7 | eqcomi | ⊢ ∅ = ( ∅ ‘ ( Base ‘ 𝑊 ) ) |
| 9 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( ringLMod ‘ 𝑊 ) = ∅ ) | |
| 10 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( subringAlg ‘ 𝑊 ) = ∅ ) | |
| 11 | 10 | fveq1d | ⊢ ( ¬ 𝑊 ∈ V → ( ( subringAlg ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) = ( ∅ ‘ ( Base ‘ 𝑊 ) ) ) |
| 12 | 8 9 11 | 3eqtr4a | ⊢ ( ¬ 𝑊 ∈ V → ( ringLMod ‘ 𝑊 ) = ( ( subringAlg ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ) |
| 13 | 6 12 | pm2.61i | ⊢ ( ringLMod ‘ 𝑊 ) = ( ( subringAlg ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) |