This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 28-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpup.b | |- B = ( Base ` H ) |
|
| frgpup.n | |- N = ( invg ` H ) |
||
| frgpup.t | |- T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) |
||
| frgpup.h | |- ( ph -> H e. Grp ) |
||
| frgpup.i | |- ( ph -> I e. V ) |
||
| frgpup.a | |- ( ph -> F : I --> B ) |
||
| frgpup.w | |- W = ( _I ` Word ( I X. 2o ) ) |
||
| frgpup.r | |- .~ = ( ~FG ` I ) |
||
| frgpup.g | |- G = ( freeGrp ` I ) |
||
| frgpup.x | |- X = ( Base ` G ) |
||
| frgpup.e | |- E = ran ( g e. W |-> <. [ g ] .~ , ( H gsum ( T o. g ) ) >. ) |
||
| frgpup.u | |- U = ( varFGrp ` I ) |
||
| frgpup.y | |- ( ph -> A e. I ) |
||
| Assertion | frgpup2 | |- ( ph -> ( E ` ( U ` A ) ) = ( F ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup.b | |- B = ( Base ` H ) |
|
| 2 | frgpup.n | |- N = ( invg ` H ) |
|
| 3 | frgpup.t | |- T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) |
|
| 4 | frgpup.h | |- ( ph -> H e. Grp ) |
|
| 5 | frgpup.i | |- ( ph -> I e. V ) |
|
| 6 | frgpup.a | |- ( ph -> F : I --> B ) |
|
| 7 | frgpup.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 8 | frgpup.r | |- .~ = ( ~FG ` I ) |
|
| 9 | frgpup.g | |- G = ( freeGrp ` I ) |
|
| 10 | frgpup.x | |- X = ( Base ` G ) |
|
| 11 | frgpup.e | |- E = ran ( g e. W |-> <. [ g ] .~ , ( H gsum ( T o. g ) ) >. ) |
|
| 12 | frgpup.u | |- U = ( varFGrp ` I ) |
|
| 13 | frgpup.y | |- ( ph -> A e. I ) |
|
| 14 | 8 12 | vrgpval | |- ( ( I e. V /\ A e. I ) -> ( U ` A ) = [ <" <. A , (/) >. "> ] .~ ) |
| 15 | 5 13 14 | syl2anc | |- ( ph -> ( U ` A ) = [ <" <. A , (/) >. "> ] .~ ) |
| 16 | 15 | fveq2d | |- ( ph -> ( E ` ( U ` A ) ) = ( E ` [ <" <. A , (/) >. "> ] .~ ) ) |
| 17 | 0ex | |- (/) e. _V |
|
| 18 | 17 | prid1 | |- (/) e. { (/) , 1o } |
| 19 | df2o3 | |- 2o = { (/) , 1o } |
|
| 20 | 18 19 | eleqtrri | |- (/) e. 2o |
| 21 | opelxpi | |- ( ( A e. I /\ (/) e. 2o ) -> <. A , (/) >. e. ( I X. 2o ) ) |
|
| 22 | 13 20 21 | sylancl | |- ( ph -> <. A , (/) >. e. ( I X. 2o ) ) |
| 23 | 22 | s1cld | |- ( ph -> <" <. A , (/) >. "> e. Word ( I X. 2o ) ) |
| 24 | 2on | |- 2o e. On |
|
| 25 | xpexg | |- ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
|
| 26 | 5 24 25 | sylancl | |- ( ph -> ( I X. 2o ) e. _V ) |
| 27 | wrdexg | |- ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) |
|
| 28 | fvi | |- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
|
| 29 | 26 27 28 | 3syl | |- ( ph -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
| 30 | 7 29 | eqtrid | |- ( ph -> W = Word ( I X. 2o ) ) |
| 31 | 23 30 | eleqtrrd | |- ( ph -> <" <. A , (/) >. "> e. W ) |
| 32 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupval | |- ( ( ph /\ <" <. A , (/) >. "> e. W ) -> ( E ` [ <" <. A , (/) >. "> ] .~ ) = ( H gsum ( T o. <" <. A , (/) >. "> ) ) ) |
| 33 | 31 32 | mpdan | |- ( ph -> ( E ` [ <" <. A , (/) >. "> ] .~ ) = ( H gsum ( T o. <" <. A , (/) >. "> ) ) ) |
| 34 | 1 2 3 4 5 6 | frgpuptf | |- ( ph -> T : ( I X. 2o ) --> B ) |
| 35 | s1co | |- ( ( <. A , (/) >. e. ( I X. 2o ) /\ T : ( I X. 2o ) --> B ) -> ( T o. <" <. A , (/) >. "> ) = <" ( T ` <. A , (/) >. ) "> ) |
|
| 36 | 22 34 35 | syl2anc | |- ( ph -> ( T o. <" <. A , (/) >. "> ) = <" ( T ` <. A , (/) >. ) "> ) |
| 37 | df-ov | |- ( A T (/) ) = ( T ` <. A , (/) >. ) |
|
| 38 | iftrue | |- ( z = (/) -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( F ` y ) ) |
|
| 39 | fveq2 | |- ( y = A -> ( F ` y ) = ( F ` A ) ) |
|
| 40 | 38 39 | sylan9eqr | |- ( ( y = A /\ z = (/) ) -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( F ` A ) ) |
| 41 | fvex | |- ( F ` A ) e. _V |
|
| 42 | 40 3 41 | ovmpoa | |- ( ( A e. I /\ (/) e. 2o ) -> ( A T (/) ) = ( F ` A ) ) |
| 43 | 13 20 42 | sylancl | |- ( ph -> ( A T (/) ) = ( F ` A ) ) |
| 44 | 37 43 | eqtr3id | |- ( ph -> ( T ` <. A , (/) >. ) = ( F ` A ) ) |
| 45 | 44 | s1eqd | |- ( ph -> <" ( T ` <. A , (/) >. ) "> = <" ( F ` A ) "> ) |
| 46 | 36 45 | eqtrd | |- ( ph -> ( T o. <" <. A , (/) >. "> ) = <" ( F ` A ) "> ) |
| 47 | 46 | oveq2d | |- ( ph -> ( H gsum ( T o. <" <. A , (/) >. "> ) ) = ( H gsum <" ( F ` A ) "> ) ) |
| 48 | 6 13 | ffvelcdmd | |- ( ph -> ( F ` A ) e. B ) |
| 49 | 1 | gsumws1 | |- ( ( F ` A ) e. B -> ( H gsum <" ( F ` A ) "> ) = ( F ` A ) ) |
| 50 | 48 49 | syl | |- ( ph -> ( H gsum <" ( F ` A ) "> ) = ( F ` A ) ) |
| 51 | 47 50 | eqtrd | |- ( ph -> ( H gsum ( T o. <" <. A , (/) >. "> ) ) = ( F ` A ) ) |
| 52 | 16 33 51 | 3eqtrd | |- ( ph -> ( E ` ( U ` A ) ) = ( F ` A ) ) |