This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodge0.kph | |- F/ k ph |
|
| fprodge0.a | |- ( ph -> A e. Fin ) |
||
| fprodge0.b | |- ( ( ph /\ k e. A ) -> B e. RR ) |
||
| fprodge0.0leb | |- ( ( ph /\ k e. A ) -> 0 <_ B ) |
||
| Assertion | fprodge0 | |- ( ph -> 0 <_ prod_ k e. A B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodge0.kph | |- F/ k ph |
|
| 2 | fprodge0.a | |- ( ph -> A e. Fin ) |
|
| 3 | fprodge0.b | |- ( ( ph /\ k e. A ) -> B e. RR ) |
|
| 4 | fprodge0.0leb | |- ( ( ph /\ k e. A ) -> 0 <_ B ) |
|
| 5 | 0xr | |- 0 e. RR* |
|
| 6 | pnfxr | |- +oo e. RR* |
|
| 7 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 8 | ax-resscn | |- RR C_ CC |
|
| 9 | 7 8 | sstri | |- ( 0 [,) +oo ) C_ CC |
| 10 | 9 | a1i | |- ( ph -> ( 0 [,) +oo ) C_ CC ) |
| 11 | ge0mulcl | |- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) |
|
| 12 | 11 | adantl | |- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) |
| 13 | elrege0 | |- ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) ) |
|
| 14 | 3 4 13 | sylanbrc | |- ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) ) |
| 15 | 1re | |- 1 e. RR |
|
| 16 | 0le1 | |- 0 <_ 1 |
|
| 17 | ltpnf | |- ( 1 e. RR -> 1 < +oo ) |
|
| 18 | 15 17 | ax-mp | |- 1 < +oo |
| 19 | 0re | |- 0 e. RR |
|
| 20 | elico2 | |- ( ( 0 e. RR /\ +oo e. RR* ) -> ( 1 e. ( 0 [,) +oo ) <-> ( 1 e. RR /\ 0 <_ 1 /\ 1 < +oo ) ) ) |
|
| 21 | 19 6 20 | mp2an | |- ( 1 e. ( 0 [,) +oo ) <-> ( 1 e. RR /\ 0 <_ 1 /\ 1 < +oo ) ) |
| 22 | 15 16 18 21 | mpbir3an | |- 1 e. ( 0 [,) +oo ) |
| 23 | 22 | a1i | |- ( ph -> 1 e. ( 0 [,) +oo ) ) |
| 24 | 1 10 12 2 14 23 | fprodcllemf | |- ( ph -> prod_ k e. A B e. ( 0 [,) +oo ) ) |
| 25 | icogelb | |- ( ( 0 e. RR* /\ +oo e. RR* /\ prod_ k e. A B e. ( 0 [,) +oo ) ) -> 0 <_ prod_ k e. A B ) |
|
| 26 | 5 6 24 25 | mp3an12i | |- ( ph -> 0 <_ prod_ k e. A B ) |