This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite product closure lemma. A version of fprodcllem using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodcllemf.ph | ⊢ Ⅎ 𝑘 𝜑 | |
| fprodcllemf.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | ||
| fprodcllemf.xy | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) | ||
| fprodcllemf.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fprodcllemf.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑆 ) | ||
| fprodcllemf.1 | ⊢ ( 𝜑 → 1 ∈ 𝑆 ) | ||
| Assertion | fprodcllemf | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodcllemf.ph | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | fprodcllemf.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| 3 | fprodcllemf.xy | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) | |
| 4 | fprodcllemf.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 5 | fprodcllemf.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑆 ) | |
| 6 | fprodcllemf.1 | ⊢ ( 𝜑 → 1 ∈ 𝑆 ) | |
| 7 | nfcv | ⊢ Ⅎ 𝑗 𝐵 | |
| 8 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 | |
| 9 | csbeq1a | ⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) | |
| 10 | 7 8 9 | cbvprodi | ⊢ ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 11 | 5 | ex | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝐵 ∈ 𝑆 ) ) |
| 12 | 1 11 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
| 13 | rspsbc | ⊢ ( 𝑗 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → [ 𝑗 / 𝑘 ] 𝐵 ∈ 𝑆 ) ) | |
| 14 | 12 13 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → [ 𝑗 / 𝑘 ] 𝐵 ∈ 𝑆 ) |
| 15 | sbcel1g | ⊢ ( 𝑗 ∈ V → ( [ 𝑗 / 𝑘 ] 𝐵 ∈ 𝑆 ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑆 ) ) | |
| 16 | 15 | elv | ⊢ ( [ 𝑗 / 𝑘 ] 𝐵 ∈ 𝑆 ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑆 ) |
| 17 | 14 16 | sylib | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑆 ) |
| 18 | 2 3 4 17 6 | fprodcllem | ⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ 𝑆 ) |
| 19 | 10 18 | eqeltrid | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |