This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodss.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| prodss.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | ||
| prodss.3 | ⊢ ( 𝜑 → ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ) | ||
| prodss.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 1 ) | ||
| prodss.5 | ⊢ ( 𝜑 → 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) | ||
| Assertion | prodss | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodss.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | prodss.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | |
| 3 | prodss.3 | ⊢ ( 𝜑 → ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ) | |
| 4 | prodss.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 1 ) | |
| 5 | prodss.5 | ⊢ ( 𝜑 → 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 6 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 7 | simpr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 8 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ) |
| 9 | 1 5 | sstrd | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 11 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 12 | iftrue | ⊢ ( 𝑚 ∈ 𝐵 → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
| 14 | 2 | ex | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
| 16 | eldif | ⊢ ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) | |
| 17 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 18 | 4 17 | eqeltrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
| 19 | 16 18 | sylan2br | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
| 20 | 19 | expr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( ¬ 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
| 21 | 15 20 | pm2.61d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 22 | 21 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
| 23 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐶 | |
| 24 | 23 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ |
| 25 | csbeq1a | ⊢ ( 𝑘 = 𝑚 → 𝐶 = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) | |
| 26 | 25 | eleq1d | ⊢ ( 𝑘 = 𝑚 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 27 | 24 26 | rspc | ⊢ ( 𝑚 ∈ 𝐵 → ( ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 28 | 22 27 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 29 | 13 28 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ∈ ℂ ) |
| 30 | iffalse | ⊢ ( ¬ 𝑚 ∈ 𝐵 → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) = 1 ) | |
| 31 | 30 17 | eqeltrdi | ⊢ ( ¬ 𝑚 ∈ 𝐵 → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ∈ ℂ ) |
| 32 | 31 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ∈ ℂ ) |
| 33 | 29 32 | pm2.61dan | ⊢ ( 𝜑 → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ∈ ℂ ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ∈ ℂ ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ∈ ℂ ) |
| 36 | nfcv | ⊢ Ⅎ 𝑘 𝑚 | |
| 37 | nfv | ⊢ Ⅎ 𝑘 𝑚 ∈ 𝐵 | |
| 38 | nfcv | ⊢ Ⅎ 𝑘 1 | |
| 39 | 37 23 38 | nfif | ⊢ Ⅎ 𝑘 if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) |
| 40 | eleq1w | ⊢ ( 𝑘 = 𝑚 → ( 𝑘 ∈ 𝐵 ↔ 𝑚 ∈ 𝐵 ) ) | |
| 41 | 40 25 | ifbieq1d | ⊢ ( 𝑘 = 𝑚 → if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
| 42 | eqid | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) = ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) | |
| 43 | 36 39 41 42 | fvmptf | ⊢ ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ∈ ℂ ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
| 44 | 11 35 43 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
| 45 | iftrue | ⊢ ( 𝑚 ∈ 𝐴 → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ) | |
| 46 | 45 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐴 ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ) |
| 47 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐴 ) → 𝑚 ∈ 𝐴 ) | |
| 48 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝐴 ⊆ 𝐵 ) |
| 49 | 48 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐴 ) → 𝑚 ∈ 𝐵 ) |
| 50 | 28 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 51 | 49 50 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐴 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 52 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) | |
| 53 | 52 | fvmpts | ⊢ ( ( 𝑚 ∈ 𝐴 ∧ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
| 54 | 47 51 53 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
| 55 | 46 54 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐴 ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
| 56 | 55 | ex | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝑚 ∈ 𝐴 → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ) |
| 57 | 56 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → ( 𝑚 ∈ 𝐴 → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ) |
| 58 | iffalse | ⊢ ( ¬ 𝑚 ∈ 𝐴 → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = 1 ) | |
| 59 | 58 | adantl | ⊢ ( ( 𝑚 ∈ 𝐵 ∧ ¬ 𝑚 ∈ 𝐴 ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = 1 ) |
| 60 | 59 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑚 ∈ 𝐵 ∧ ¬ 𝑚 ∈ 𝐴 ) ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = 1 ) |
| 61 | eldif | ⊢ ( 𝑚 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑚 ∈ 𝐵 ∧ ¬ 𝑚 ∈ 𝐴 ) ) | |
| 62 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = 1 ) |
| 63 | 62 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∀ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = 1 ) |
| 64 | 23 | nfeq1 | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐶 = 1 |
| 65 | 25 | eqeq1d | ⊢ ( 𝑘 = 𝑚 → ( 𝐶 = 1 ↔ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 = 1 ) ) |
| 66 | 64 65 | rspc | ⊢ ( 𝑚 ∈ ( 𝐵 ∖ 𝐴 ) → ( ∀ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = 1 → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 = 1 ) ) |
| 67 | 63 66 | mpan9 | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( 𝐵 ∖ 𝐴 ) ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 = 1 ) |
| 68 | 61 67 | sylan2br | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑚 ∈ 𝐵 ∧ ¬ 𝑚 ∈ 𝐴 ) ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 = 1 ) |
| 69 | 60 68 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑚 ∈ 𝐵 ∧ ¬ 𝑚 ∈ 𝐴 ) ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
| 70 | 69 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → ( ¬ 𝑚 ∈ 𝐴 → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ) |
| 71 | 57 70 | pm2.61d | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
| 72 | 12 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
| 73 | 71 72 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
| 74 | 48 | ssneld | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( ¬ 𝑚 ∈ 𝐵 → ¬ 𝑚 ∈ 𝐴 ) ) |
| 75 | 74 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ ¬ 𝑚 ∈ 𝐵 ) → ¬ 𝑚 ∈ 𝐴 ) |
| 76 | 75 58 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ ¬ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = 1 ) |
| 77 | 30 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ ¬ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) = 1 ) |
| 78 | 76 77 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ ¬ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
| 79 | 73 78 | pm2.61dan | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
| 80 | 79 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
| 81 | 44 80 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐴 , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) ) |
| 82 | 2 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
| 83 | 82 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
| 84 | 83 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ∈ ℂ ) |
| 85 | 6 7 8 10 81 84 | zprod | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ( ⇝ ‘ seq 𝑀 ( · , ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ) ) |
| 86 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 87 | 43 | ancoms | ⊢ ( ( if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ∈ ℂ ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
| 88 | 34 87 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
| 89 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → 𝑚 ∈ 𝐵 ) | |
| 90 | eqid | ⊢ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) | |
| 91 | 90 | fvmpts | ⊢ ( ( 𝑚 ∈ 𝐵 ∧ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ∈ ℂ ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
| 92 | 89 50 91 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
| 93 | 92 | ifeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
| 94 | 93 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
| 95 | iffalse | ⊢ ( ¬ 𝑚 ∈ 𝐵 → if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = 1 ) | |
| 96 | 95 30 | eqtr4d | ⊢ ( ¬ 𝑚 ∈ 𝐵 → if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
| 97 | 96 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ¬ 𝑚 ∈ 𝐵 ) → if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
| 98 | 94 97 | pm2.61dan | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) = if ( 𝑚 ∈ 𝐵 , ⦋ 𝑚 / 𝑘 ⦌ 𝐶 , 1 ) ) |
| 99 | 88 98 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐵 , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) , 1 ) ) |
| 100 | 21 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℂ ) |
| 101 | 100 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℂ ) |
| 102 | 101 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑚 ∈ 𝐵 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ∈ ℂ ) |
| 103 | 6 7 8 86 99 102 | zprod | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = ( ⇝ ‘ seq 𝑀 ( · , ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ if ( 𝑘 ∈ 𝐵 , 𝐶 , 1 ) ) ) ) ) |
| 104 | 85 103 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ∏ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
| 105 | prodfc | ⊢ ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ∏ 𝑘 ∈ 𝐴 𝐶 | |
| 106 | prodfc | ⊢ ∏ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = ∏ 𝑘 ∈ 𝐵 𝐶 | |
| 107 | 104 105 106 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) |
| 108 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 ⊆ 𝐵 ) |
| 109 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐵 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 110 | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ | |
| 111 | 110 | fdmi | ⊢ dom ℤ≥ = ℤ |
| 112 | 111 | eleq2i | ⊢ ( 𝑀 ∈ dom ℤ≥ ↔ 𝑀 ∈ ℤ ) |
| 113 | ndmfv | ⊢ ( ¬ 𝑀 ∈ dom ℤ≥ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) | |
| 114 | 112 113 | sylnbir | ⊢ ( ¬ 𝑀 ∈ ℤ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) |
| 115 | 114 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → ( ℤ≥ ‘ 𝑀 ) = ∅ ) |
| 116 | 109 115 | sseqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐵 ⊆ ∅ ) |
| 117 | 108 116 | sstrd | ⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 ⊆ ∅ ) |
| 118 | ss0 | ⊢ ( 𝐴 ⊆ ∅ → 𝐴 = ∅ ) | |
| 119 | 117 118 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 = ∅ ) |
| 120 | ss0 | ⊢ ( 𝐵 ⊆ ∅ → 𝐵 = ∅ ) | |
| 121 | 116 120 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐵 = ∅ ) |
| 122 | 119 121 | eqtr4d | ⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → 𝐴 = 𝐵 ) |
| 123 | 122 | prodeq1d | ⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) |
| 124 | 107 123 | pm2.61dan | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) |